
DIC FILE COPY

0 AAMRL-TR-88-041

jTHE RETRIEVAL OF
'E INFORMATION FROM SECONDARY

MEMORY: A REVIEW AND NEW
, FINDINGS (U)

David L. Strayer
Arthur F. Kramer

UNIVERSITY OF ILLINOIS

2!

DECEMBER 1989

FINAL REPORT FOR PERIOD SEPTEMBER 1987 - MARCH18 D1T98C
ELECTE

Approved for public release; distribution is unlimited.

HARRY G. ARMSTRONG AEROSPACE MEDICAL RESEARCH LABORATORY
HUMAN SYSTEMS DIVISION
AIR FORCE SYSTEMS COMMAND
WRIGHT-PATTERSON AIR FORCE BASE, OHIO 4543343573

~j4 [) ~ ~26

NOTICES

When US Government drawings, specifications, or other data are used for any purpose other
than a definitely related Government procurement operation, the Government thereby incurs
no responsibility nor any obligation whatsoever, and the fact that the Government may have
formulated, furnished, or in any way supplied the said drawings, specifications, or other data,
is not to be regarded by implication or otherwise, as in any manner licensing the holder or any
other person or corporation, or conveying any rights or permission to manufacture, use, or sell
any patented invention that may in any way be related thereto.

Please do not request copies of this report from the Armstrong Aerospace Medical Research
Laboratory. Additional copies may be purchased from:

National Technical Information Service
5285 Port Royal Road
Springfield, Virginia 22161

Federal Government agencies and their contractors registered with the Defense Technical
Information Center should direct requests for copies of this report to:

Defense Technical Information Center
Cameron Station
Alexandria, Virginia 22314

TECHNICAL REVIEW AND APPROVAL

AAMRL-TR-88-041

This report has been reviewed by the Office of Public Afairs (PA) and is releasable to the
National Technical Information Service (NTIS). At NTIS, it will be available to the general
public, including foreign nations.

This technical report has been reviewed and is approved for publication.

FOR THE COMMANDER

CHARLES BATES, JR.
Director, Human Engineering Division
Armstrong Aerospace Medical Research Laboratory

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE
Form Approved

REPORT DOCUMENTATION PAGE OMB No. 070,-0188

la. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

UNCLASSIFIED I

2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION /AVAILABILITY OF REPORT
Approved for public release;

2b. DECLASSIFICATION /DOWNGRADING SCHEDULE distribution is unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

AAMRL-TR-88-041

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICe SYMBOL 7a. NAME OF MONITORING ORGANIZATION
University of Illinois * (If applicable) Harry G. Armstrong Aerospace Medical

Research Laboratory

6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

Champaign IL 61820 Wright-Patterson AFB OH 45433-6573

Ba. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATfON (if applicable)

HEG F33615-84-D-0505

8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO ACCESSION NO.

61102F 2313 Vi 35

11. TITLE (Include Security Classification)

The Retrieval of Information from Secondary Memory: A Review and New Findings (U)

12. PERSONAL AUTHOR(S)

Strayer, David L. and Kramer, Arthur F.
13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT

FINAL FROM SeD 87 TO Mar 88 1988 March 181

16. SUPPLEMENTARY NOTATION

Subcontract to Universal Energy Systems, 4401 Dayton-Xenia Rd., Dayton, Ohio 45432

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
05 08 Memory SearchFIELD GROUP SUB-GROUP Evoked Potentials

06 04 Reaction Time
19. ABSTRACT (Continue on reverse if necessary and identify by block number)
Memory search was compared when the memorized items were either in primary or secondary

memory. Distractor tasks were used to require secondary memory storage during a memory

retrieval task. The additive effects of memory load and delay support the interpretation

of separate retrieval and memory search processes. In a second experiment, event related

potentials were used to examine the hypothesis that the increase in reaction time from

primary to secondary memory was due to the insertion of a retrieval process prior to

memory comparison. P300 latency data suggest that stimulus evaluation and response related

processing are both affected by delay. / p-,J "

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
QJUNCLASSIFIED/UNLIMITED 0 SAME AS RPT. 0 DTIC USERS UNCLASSIFIED

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL

GLENN F. WILSON, Ph.D. 513-255-8748 AAMRL/HEG

DD Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED

PREFACE

The purpose of the project summarized by this report was to investigate
the processes involved in retrieving information from secondary memory.
Reaction time and evoked potential methods were used as measures of
performance. The strategy applied was to compare differences in these
measures between situations utilizing primary and secondary memory tasks.

While reaction times represent the total time taken to evaluate and
respond to a given stimulus in a task, the brain evoked potential may be
able to shed light on the nature of the component processes that yield the
final motor responses measured with the reaction time. This window into the
"black box" could be very helpful in illuminating the underlying procedures
that the human brain utilizes in processing information.

Initial phases of this project were carried out in collaboration with
Dr. Delos Wickens and his input and insights are gratefully acknowledged.

Acoession For

NTIS GRA&I

DTIC TAB
Unannounced
Justificatlo OTIC

COPY

B INSPECTO

6

Distribution/

Avaiability Codes

iii

TABLE OF CONTENTS

Page

Experiment 1: Primary/Secondary Memory Search 4

Methods: Experiment 1 5

Results and Discussion: Experiment 1 7

Conclusions: Experiment 1 10

Experiment 2: ERP Analysis of Primary/Secondary Memory Search . . . 12

Methods: Experiment 2 12

Results and Discussion: Experiment 2 14

Conclusions: Experiment 2 30

Footnotes 32

References 33

Appendix A 36

Appendix B 60

Appendix C 62

Appendix D 65

Appendix F 71

Appendix G 75

Appendix H 80

Appendix I 101

Appendix J. 122

Appendix K 154

Appendix L 172

Appendix M 177

A endix N 180

v

Several studies have compared performance in memory search tasks when
the memorized items are either in primary or secondary memory (see footnote
1). The focus of these studies is on the dynamics of the process of
retrieval of information from secondary memory to primary memory. Using
additive factors (Sternberg, 1969b) and subtraction (Donders, 1868/1969)
logic, one can make inferences about the processes which are involved in the
transfer of information and the relative duration of these processes. This
can be achieved by comparing the regression equation parameters of
performance in primary and secondary memory. Differences in the intercepts
and slopes of primary and secondary memory reveal the characteristics of
this transfer process. Typically these experiments employ a distractor task
between the presentation of the memory set and the probe stimulus to prevent
rehearsal of the memory set items. Without rehearsal, information in
primary memory decays rapidly (e.g., Murdock, 1961; Muter, 1980; Peterson &
Peterson, 1959), thus the information must be retrieved from secondary
memory for subjects to perform the memory search task.

Sternberg (Sternberg, 1969a, exp. 5; Sternberg, Kroll, and Nasto, 1969)
was one of the first to compare primary and secondary memory performance in
the memory search task. Subjects memorized a list of 1, 3, or 5 digits. In
the secondary memory condition, a list of 7 letters was sequentially
presented (with a total duration of 3.5 seconds) prior to the presentation
of the probe stimulus. Subjects were instructed to retain the list of
letters in memory, and catch trials were included to insure that subjects
complied with instructions. The retention of the list of letters was
intended to prevent subjects from rehearsing the memory set and require the
retrieval of the memory set from secondary memory. In the primary memory
condition, no distractor task preceded the probe stimulus. The linear
regression equation for primary memory was RT = 336 + 57(x), while for
secondary memory RT = 467 + 105(x), where x refers to memory set size. Both
the intercept and the slope were greater for the secondary memory condition.
The increase in the intercept (131 msec) was taken to reflect the time to
locate the memory set in secondary memory. The increase in the slope (48
msec) was taken to suggest a serial transfer of the entire memory set into
primary memory. One caveat in interpreting the differences between primary
and secondary memory in these studies concerns the duration of the
distractor task. Evidence from the Brown-Peterson paradigm suggests that
the memory set information may not have completely decayed from primary
memory within the 3.5 second interval (see Flexser, 1978 for a similar
argument). If this were the case, the increase in the slope from primary
memory to secondary memory may be the result of a mixture of primary and
secondary memory performance, and thus the slope differences are ambiguous.
Furthermore, if the memory set information had not fully decayed from
primary memory, the difference between primary and secondary memory would
underestimate the true retrieval time.

Wickens and colleagues (Coyne, Allen, and Wickens, 1986; Wickens,
Moody, and Dow, 1981; Wickens, Moody, and Vidulich, 1985) have provided the
most extensive studies comparing primary and secondary memory. Wickens et
al. (1981, exp. 1) presented memory sets of 2 or 4 words for 3 seconds.
Following the memory set, subjects were presented with a random three digit
number and instructed to count backwards by 3s for a duration of 12 seconds.
A 2 second interval in which the random number was removed from the display
signaled the end of the distractor task and the upcoming probe stimulus. No

1

measure of subjects' performance was obtained for the distractor task. The
probe was presented for 2 seconds, and the interval in which subjects could
respond was 3 seconds from probe onset. A manipulation investigating the
effects of proactive interference on primary and secondary memory was
accomplished by selecting the words in the memory set from the same
taxonomic category. Three trials using stimuli from the same taxonomic
category were presented (without repetition of words) before a new category
was chosen. The first memory set was deemed low in interference, the third
high in interference. Experimental factors were mixed within the session.
Wickens et al. (1981, exp. 2) was identical to Wickens et al. (1981, exp.
1), with the exception that the distractor task was eliminated. This
constituted the primary memory condition. Note that the primary - secondary
memory manipulation was a between subjects factor. Thus comparisons between
experiments 1 and 2 provide a measure of the time to transfer the memory set
from secondary memory to primary memory.

The slopes and intercepts obtained in the experiment were:

Primary Secondary

target RT = 500 + 33(x) RT = 595 + 39(x)

non-target RT = 501 + 36.25(x) RT = 630 + 37.5(x)

It is evident that memory load did not interact with the manipulation of
primary and secondary memory, which is in contrast to Sternberg's (1969a,
exp. 5) results. One potential reason for the discrepancy is the nature and
duration of the distractor task. The Wickens study prevents subjects from
rehearsing the memory set for a longer duration than Sternberg's studies,
and probably reflects a more accurate representation of secondary memory
performance. It is also apparent that there is a substantial difference in
the intercepts of primary and seconCary memory (112 msec). This estimate is
more closely in agreement with the Sternberg studies.

The data from experiments 1 and 2 were fitted to the following
regression equation:

RT = I a + b(x) + t] + [(rl + r2) + q I

The first bracketed term in the equation describes performance in primary
memory, where " a " refers to the intercept, " b " refers to the slope,
" x " refers to memory set size, and " t" refers to differences between
target and non-target stimuli. The second bracketed term describes
performance in secondary memory. "he term " rl " refers to the increase in
the intercept under low proactive interference conditions, " r2 " refers to
the additional increase under high proactive interference conditions, and
" q " refers to differential effects for target and non-target stimuli. The
values for the terms in the equation are:

RT= [489 + 37(x) + 14] + ((95 + 38) + 17]

2

This model accounted for 99% of the variance across conditions. It is
important to note that these results imply that the retrieval process is
independent (but see Sternberg, 1969b) of the memory search process.
According to this interpretation, there is a constant time for retrieving
the memory set items, and they are retrieved in a chunk (i.e., in parallel).
Furthermore, the effects of memory load produced equivalent results,
suggesting that the memory search process is the same for items in primary
memory as for items which have to be transferred from secondary memory to
primary memory.

Wickens (Wickens et. al., 1985, exp. 1; Wickens, personal comunication,
March 12, 1987) has also demonstrated the independence of memory search rate
and memory retrieval time using both out of category non-target probes and
repeated stimuli. Both effects reduced the slope, but the primary -
secondary memory differences were maintained. Flexser (1978) has also
reported similar intercept differences between primary and secondary memory
using memory sets of 16 and 32 (which produced small effects on search
time). These results offer additional support for the assertion that the
retrieval process and the memory search process are independent. Wickens
concluded that secondary memory conditions differ from primary memory
conditions in the addition of a retrieval process inserted prior to the
memory search operation.

In sum, the studies which have compared primary and secondary memory
using memory search paradigms have universally found that there is an
increase in the intercept between primary and secondary memory. The
magnitude of this effect seems to vary with the type of material - words
produce a larger effect than letters or digits (e.g., Wickens et al., 1985,
exp. 2). Furthermore, there is some evidence that the magnitude of the
difference between primary and secondary memory is dependent on the strength
of the trace in primary memory. The longer the interval between the memory
set and the probe stimulus, the greater the difference between primary and
secondary memory. This difference in the intercept between primary and
secondary memory has been interpreted as the time to retrieve the
information from secondary memory.

The effect of memory load on primary and secondary memory has produced
mixed results. The majority of studies report parallel curves for primary
and secondary memory (Wickens et al., 1981; Wickens et al., 1985; Wickens,
personal communication, 1987; Flexser, 1978). Forrin and Morin (1969)
reported shallower slopes for the secondary memory condition, but subjects
received substantially more practice (i.e., consistent practice) in the
secondary memory condition than in the primary memory condition. A few
studies have reported steeper slopes for secondary memory conditions (e.g.,
Sternberg, 1969; Sternberg, Kroll, and Nasto, 1969; Peters, 1974). However,
in these studies the interval between the memory set and the probe stimulus
was such that it is questionable whether the memory set information had
decayed from primary memory. If one assumes that rehearsal strengthens the
trace in primary memory, as set size increases the average trace strength of
each memory set item should decrease. This would result in differential
decay rates for different memory set sizes. Smaller memory set sizes should
take longer to decay, since the rehearsal cycle time varies with memory load
(e.g., Baddeley and Ecob, 1973; Cavanaugh, 1972; Clifton and Birenbaum,
1970; Corballis, Kirby, and Miller, 1972; Monsell, 1978). This would

3

produce a greater proportion of primary memory trials following a short
distractor task for smaller set sizes than for larger memory set sizes. The
expected outcome would result in a steeper slope for this mixture condition
than for a pure primary memory or a pure secondary memory condition.

An important consideration when evaluating the differences between the
studies concerns the nature of the distractor task. The distractor tasks
varied in difficulty and duration, and none of the experiments objectively
evaluated subjects' performance in the distractor task. The most effective
distractor task employed a backwards count task for a duration of at least
12 seconds. All of these studies reported parallel memory load functions
for primary and secondary memory. However, since performance in the
distractor task was not monitored, it is possible that sibjects may have
rehearsed the memory set even in these conditions. Clearly a distractor
task in which performance can be monitored over the course of the distractor
interval is warranted.

A final issue concerns the interval between when the distractor task
was terminated and when the probe stimulus was presented. This duration
varied from 500 msec to 2 seconds in the studies reviewed above. It is
unclear what subjects were doing in this interval, and why they did not
transfer the memory set information from secondary to primary memory. Given
the estimates of retrieval time, subjects should have had ample time to
complete this operation prior to the presentation of the probe stimulus.
Upon post-experimental questioning, subjects reported that they did not
retrieve the memory set information prior to the presentation of the probe
stimulus (Wickens et al., 1985). If subjects had, in fact, retrieved any
information from secondary memory, this should tend to obscure any true
differences between primary and secondary memory.

Experiment 1: Primary/Secondary Memory Search

Several methodological and interpretative issues remain which need to
be addressed before this paradigm can be used to assess the dynamics of
memory retrieval. The purpose of experiment 1 was to address these issues
and provide additional information concerning the process of retrieval of
information from secondary memory to primary memory.

One issue to be addressed is the proposition that the retrieval process
is independent from the memory search process. There was a trend in the
literature for studies using short distractor intervals (e.g., 4 seconds) to
find larger slopes for secondary memory conditions, while studies which used
longer distractor intervals (e.g., 12 seconds) found equivalent slopes for
primary and secondary memory. The present experiment will evaluate the
contribution of the duration of the distractor interval on the additivity of
the retrieval and memory comparison processes by manipulating the delay
between the memory set and the presentation of the probe stimulus. Three
delay conditions will be included: 0, 4, or 15 sec. The 0 delay condition
represents the situation in which no distractor task is presented between
the memory set and the probe (i.e., a pure primary memory condition). In
the 4 second delay condition, subjects will perform a distractor task for 4
seconds prior to the presentation of the probe stimulus. The duration of
the distractor task in this condition is quite close to the parameters of
Sternberg's experiment in which an increase in the set size slope was

4

observed compared to primary memory. In the 15 second delay condition,
subjects will perform a distractor task for 15 seconds prior to the
presentation of the probe. This condition is roughly equivalent to that
employed in the Wickens studies, and is intended to represent a condition in
which the memory set information is not in primary memory (i.e., a pure
secondary memory condition). Following additive factors logic, if the
memory retrieval process is independent of the memory search process, then
the effects of delay should be additive with the effects of memory load.

A second issue to be addressed by this research is related to the
finding in the Wickens study that subjects apparently did not retrieve the
memory set until the probe was presented, even though they were cued to stop
the distractor task and prepare for the probe trial with a 2 second warning
interval. It is unclear why subjects did not retrieve the memory set during
this interval. If subjects retrieved any information prior to the
presentation of the probe stimulus, the estimates of retrieval time
represent an underestimate of the true retrieval time. The present study
will present a retrieval cue which signals the termination of the distractor
task (if presented). The probe stimulus will be presented at three stimulus
onset asynchronies (SOAs) following retrieval cue onset: 200, 500, and 1000
msec. If subjects are retrieving any of the memory set information prior to
the presentation of the probe, then the retrieval time estimate (the
intercept difference between primary and secondary memory) should diminish
as SOA increases. The three SOA conditions will be factorially combined
with the three delay conditions. TWo memory set sizes will be presented: 2
and 4 and target and non-target trials will be equiprobable. All conditions
will be mixed to reduce changes in bias between conditions. It is predicted
that reaction time will increase as a function of delay and that this
increase reflects the time to retrieve the memory set information from
secondary memory. It is also predicted that if the transfer of the memory
set information is parallel, as suggested by Wickens, then the slopes for
the 0 and 15 sec delay conditions should be equivalent. If performance in
the 4 sec delay condition reflects a mixture of primary and secondary memory
conditions and this proportion varies with memory load, then there should be
an increase in the slope for this condition relative to the 0 and 15 sec
delay conditions. These effects should be modulated by SC(. The largest
differences between delay conditions should be observed with the shortest
SOA condition. If subjects retrieve any information prior to the
presentation of the probe stimulus, the difference between delay conditions
should decrease as SOA increases.

Methods: Experiment 1

Subiects

Ten subjects (3 female) age 18 to 25 participated in experiment 1.
Each subject participatel in 6 one hour sessions. Subjects were paid for
their participation.

Stimuli

The stimuli presented in the Sternberg portion of the experiment were 4
letter, monosyllabic nouns with a word frequency of 70 to 148 (Kucera,
Henry, Francis, and Nelson, 1967). Words were selected so as not to rhyme

5

or have orthographic similarity. A further constraint used in stimulus
selection was to examine all possible word pairs and eliminate any words
which resulted in strong natural associations. Thus the words formed a
heterogeneous class of stimuli. Appendix E presents the word-list employed
in the experiment. The approximate visual angle of the words subtended 1.2
degrees horizontally and 0.5 degrees vertically.

The stimuli used in the recognition running memory portion of the
experiment were the digits 1 to 9. Digits were selected randomly. The
approximate visual angle of the running memory stimuli subtended 0.3 degrees
horizontally and 0.5 degrees vertically.

Apparatus

The experiment was performed on an IBM XT, with a quadEGA card which
permitted cursor control and synchronization. The stimuli were displayed on
an IBM monochrome display. Subjects indicated their responses by pressing
the "Z" key with the left index finger and the "/" key with the right index
finger on the keyboard of the IBM computer.

Procedure

Each trial was comprised of the following events. A memory set was
presented for a duration of 3000 msec. This was followed by a 1500 msec
interval in which the display was blanked. Three delay intervals followed
the memory set: 0, 4, and 15 seconds. During the delay interval, subjects
performed a recognition running memory task which prevented rehearsal of the
memory set. Following the delay interval, an asterisk was presented for 200
msec which served as a cue for subjects to retrieve the memory set
information. Three stimulus onset asynchronies (SOAs) were included between
onset of the retrieval cue and the onset of the Sternberg probe stimulus:
200, 500, and 1000 msec. The Sternberg probe was presented for 200 msec and
legal reaction times were permitted within a 3000 msec interval following
probe onset.

Sternberg memory set sizes of 2 and 4 words were used in the
experiment. Target and non-target trials were presented equiprobably.
Targets were defined as items from the memory set. Non-targets were items
not included in the memory set. Subjects pressed one key for target trials
and another key for non-target trials. Key assignments were counterbalanced
across subjects. Instructions emphasized both speed and accuracy.

The recognition running memory task was performed in the interval
between the presentation of the memory set and the retrieval cue. The task
consisted of a series of digits presented successively for 200 msec, with an
interstimulus interval of 1000 msec. The subject's task was to press one
button if the digit bLesented on trial N matched the digit presented on
trial N-2 and another button if it did not match the item. It is important
to note that each stimulus served as a probe in the recognition task, and
subsequently served as a template against which digits presented two trials
later must be compared. For subjects to successfully perform the task, it
is necessary for them to maintain the last two digits in memory. Digits
were chosen randomly, with the constraint that mismatched stimuli occurred
twice as often as matched stimuli. This constraint was introduced to keep the

6

difficulty of the running memory task constant across trials. Subjects were
given 1000 msec to indicate their response. Instructions emphasized both
speed and accuracy. It should be re-emphasized that subjects found the
running memory task extremely demanding, requiring all their effort to
maintain performance in the task. While subjects performed the running
memory task, they were instructed not to rehearse or otherwise think about
the memory set items. Performance in the running memory task provided a
good index of subject's compliance to these instructions (see footnote 2).

Design

Memory set sizes of 2 and 4 were presented, with target and non-target
trials equiprobable. Three delay conditions were included: 0, 4, and 15
seconds. During the delay, subjects performed the recognition running
memory task, which served to prevent subjects from rehearsing the memory
set. In addition, three SOAs between retrieval cue onset and probe stimulus
onset were employed: 200, 500, and 1000 msec. Conditions were factorially
combined to form a 2 (memory load) X 2 (target vs non-target) X 3 (delay) X
3 (SOA) design. Conditions were randomly permuted across sessions and
subjects. Subjects participated in all experimental conditions. A total of
36 observations per cell were obtained for each subject. The first session
of the experiment served as practice and was not included in the analyses.

Results and Discussion: EKperiment 1

Figure 1 presents the mean reaction times obtained in the Sternberg
task. Only trials in which subjects were correct are included. An
additional constraint employed in selecting trials for analysis omitted
trials in which performance in the running memory task (if presented) was
below chance accuracy. Data are collapsed across target and non-target
trials for the three different SOA conditions. Line segments connect memory
set size means within a condition. Several effects are noteworthy. First,
reaction time increased as a function of memoiy load in all conditions,
F(1,9)=36-56, p<.001, MSe=17194. Memory load did not interact with any
other variables (all ps > .10), suggesting that the memory search process
did not differ between tasks. This conclusion is borne out by the linear
regression slopes fitted to each of the conditions in the experiment. The
average slope in the experiment was 42.0 msec per item. A comparison of the
0 and 15 second delay conditions replicates the effects reported by Wickens.
The hypothesis that the difference in slopes between primary and secondary
memory reported by Sternberg was due to the difference in the duration of
the distractor task was rejected. This follows given the equivalence of the
slopes across all delay conditions. Furthermore, these data are consistent
with a model in which the retrieval process is independent of the memory
search process, since memory load did not interact with delay.

A second noteworthy aspect of the data is the effect of SOA on reaction
time. There was a general trend for reaction time to decrease as SOA
increased, F(2,18)=62.93, p<.001, MSe-8008. We interpret this change as a
non-specific warning effect. The greater the time between the onset of the
retrieval cue and the onset of the probe, the more subjects prepared for the
upcoming probe. This effect was non-monotonic, with the greatest effect
obtained between the 200 and 500 msec SOA conditions (67 msec), and a lesser
effect between the 500 and 1000 msec SOA conditions (42 msec).

7

SOP SOA SOA
200 500 1000

1000-
1000 .-

Delay 0

Delay 4

Delay 15
C)900-

E
800 - o0"

: 700 -

S600-
t L I I II

2 4 2 4 2 4

Memory Load

Mean reaction time for each condition in experiment 1. The data

are plotted as a function of memory set size for each delay and

SOA condition. The left column in the figure represents the 200

msec SOA condition, the center column represents the 500 msec SOA

condition, and the right column represents the 1000 msec SOA

condition.

FIGURE 1

8

The manipulation of delay produced large differences in performance.
As delay increased, reaction time increased, F(2,18)=18.26, p<.001,
MSe=91,876. This effect produced changes in the linear regression
intercept, but not the slope. Following Sternberg's additive factors logic,
the additivity suggests that the delay and memory loads affect different
processes. The former presumably affects a retrieval process, while the
latter affects a memory search process.

The effect of delay was modulated by SOA, F(4,36)=9.81, p<.001,
MSe=3594. As SCA increased, the effect of delay decreased. However, this
reduction in reaction time occurred largely between the 0 and 4 second delay
conditions, while the difference between the 4 and 15 second delay
conditions remained constant across SOA conditions. The difference between
the 0 and 15 second delay conditions was approximately 285 msec in the 200
msec SCA condition. This decreased to approximately 175 msec in the 1000
msec SCA condition.

The difference in delay conditions has been used to infer the duration
of the retrieval process. Since the magnitude of the effect of delay
decreases as SCA increases, it suggests that part of the memory set
information is retrieved during the SOA interval. It is unclear why
subjects retrieved onl, part of the information during the SOA interval.
Given the estimate of retrieval time (275 msec) and the time to process the
retrieval cue (upperbound estimate of 300 msec from simple RT tasks),
subjects should have been able to retrieve the memory set information within
600 msec. Thus subjects are not fully capitalizing on the SOA interval.

One reason that reaction time differed as a function of delay in the
1000 msec SOA condition might be that this condition represents a mixture of
primary and secondary memory trials. On some trials, the memory set
information may be retrieved, while in others the retrieval may not have
been completed. If the proportion of primary memory trials to secondary
memory trials increased as SOA increased, the effect of delay should
diminish as SOA increases, which is precisely what is observed in the data.
If this hypothesis is correct, then the 1000 msec SOA reaction time
distribution should represent a mixture of pure primary and pure secondary
memory trials.

T address the mixture hypothesis, the reaction time distributions for
each subject and each condition were vincentized (Vincent, 1912; Ratcliff,
1979) to form a composite cumulative distribution function (CDF). The
vincentizing procedure is described in detail by Ratcliff (1979). Briefly,
the reaction times for each subject and condition are sorted into ascending
order and the quantiles are calculated. The quantiles are then averaged
across subjects to obtain the group quantiles. From the group quantiles a
group reaction time distribution is generated which retains the shape of the
individual subject distributions. This process is equivalent to a simple
linear interpolation, and the resulting distribution represents the
distribution of the average subject. The CDFs have been divided into 20
intervals, each containing 5% of the distribution. The mean of each
interval is cross-plotted against the interval position.

The CDFs for the 0 and 15 second delays are plotted at each SOA for
target memory load 4 trials in figure 2. All the CDFs have a general

9

scallop shape which reflects a positive skew in the RT distrioutions. Of
central interest is the shape of the distributions for the different delays
as a function of SO. For the 0 delay condition, the CDFs are tightly
clustered and parallel over the entire latency interval. Each distribution
is shifted with SO. The CDFs for the 15 second delay conditions are also
plotted in the figure. For the 200 msec SOA condition the entire CDF has
shifted out in time relative to the 0 delay CDFs. In contrast, the 500 and
1000 msec SOA conditions produced CDFs which initially clustered with the 0
delay conditions. At about the median of each CDF, the functions deviate
from the 0 delay conditions and approach the 15 second delay, 200 msec SOA
condition. This reflects a mixture of distributions (Ratcliff, 1979) and
supports the hypothesis that the 1000 and 500 msec SOA conditions reflect a
mixture of primary and secondary memory trials. Furthermore, if subjects
are retrieving memory set information in the SOA interval, one would predict
that the proportion of primary memory trials would be larger in the 1000
msec SOA condition. This in fact appears to be the case. The CDF for the
500 msec SOA condition deviates from the 0 delay conditions more rapidly
than does the 1000 msec SOA condition. Thus, these data suggest that
subjects are retrieving information about the memory set during the SOA
interval and that performance at longer SOAs reflects a mixture of primary
and secondary memory trials. The proportion of primary to secondary memory
trials is modulated by the SOA interval.

To estimate the proportion of primary and secondary memory trials in
the 1000 msec SOA, 15 second delay condition, hypothetical distributions
were generated by randomly selecting trials from the 0 and 15 second delay,
200 msec SOA conditions. Figure 3 presents the CDFs for selected
proportions of primary and secondary memory trials. The CDF obtained in the
1000 msec SOA, 15 second delay condition (adjusted for SOP is also plotted
in figure 3. This condition falls between 50/50 and 75/25 secondary/primary
memory proportions and provides further support for the mixture hypothesis.

Cne effect which did not attain significance was the effect of response
type (target vs non-target), F(1,9)=3.06, p>.10, MSe=88852. This is consis-
tent with previous research in which the memory set is changed after every
trial (Sternberg, 1975). Further, the probability of a mismatched trial was
twice the probability of a matched trial in the running memory task and this
may have offset any response bias for target trials in the Sternberg task.

Conclusions: Experiment 1

In sum, the additive effects of memory load and delay provide support
for the interpretation of separate retrieval and memory search processes.
The data further suggest that the memory set information is retrieved as a
unit. These results are in direct contrast to Sternberg's findings. The
data from the 4 second delay condition suggest that the duration of the
distractor task was not responsible for these differences. The manipulation
of SOA provided evidence that subjects retrieve some of the information
during the SOA interval; however, this retrieval is not complete prior to
the presentation of the probe. The 1000 msec SOA condition should have
provided ample time to retrieve the information. Evidence from the
distributions of reaction time for the different conditions suggest that
performance in the 1000 msec SOA condition may represent a mixture of
primary and secondary memory conditions.

10

100

80-- ///80 .."" //
) o- : /,

zI
uJ I"

w 60- /

Iw r

401

Delay 0 Delay 1520 - -SOA 200
I /.. . SOA 500

- j SOA 1000

I

600 1000 1400 1800

Reaction Time (msec)
Target Load 4

The vincentized cumulative distribution functions for the
0 and 15 second delay conditions at each SOA condition. The
target memory load 4 condition is presented. The reaction
time distribution was divided into 5% quantiles and the mean
latency of eaca quantile was calculated. The means are
plotted as a function of quantile.

FIGURE 2

11

Experiment 2: ERP Analysis of Primary/Secondary Memory Search

Experiment 2 examined the Event-Related Brain Potentials (ERPs)
elicited in the primary/secondary memory search task. This analysis was
conducted to determine if the increases in reaction time as a function of
delay in experiment 1 were the result of increases in stimulus evaluation
processing, response-related processing, or both. Wickens et al. (1981,
1985) hypothesized that the increase in reaction time from primary to
secondary memory was due to the inclusion of a retrieval process inserted
prior to the memory comparison process in secondary memory conditions. If
this hypothesis is correct, then stimulus evaluation processes should be
delayed as subjects must retrieve the memory set information from secondary
memory. However, performance in secondary memory may be slower than primary
memory due to shifts in response bias. Error rates were greater in
secondary memory, and subjects may have adopted a more conservative response
bias under these conditions. Since the P300 component of the ERP is
sensitive to stimulus evaluation processes, but relatively insensitive to
response-related processes (Magliero, Bashore, Coles, and Donchin, 1983;
McCarthy and Donchin, 1981), the P300 can be used to dissociate these two
factors.

The 500 msec SOA condition of experiment 1 was selected to record ERPs
from experiment 2. The experimental parameters were identical to experiment
1. If P300 latency increases as a function of delay, this will provide
support for the hypothesis that a retrieval process is inserted prior to the
memory comparison process. If P300 latency does not increase as a function
of delay, this will provide support for the hypothesis that primary and
secondary memory differences are the result of response criterion shifts.

Methods: Experiment 2

Subjects

Ten young subjects (age range 18 to 30) participated in the experiment
(see footnote 3). Subjects were right-handed with normal or corrected-to-
normal vision. Subjects were paid for their participation in the
experiment.

Stimuli and Apparatus

The stimuli were identical to experiment 1. The stimuli were presented
on a Matrox display positioned approximately 70 cm from the subjects. The
stimuli were presented within a rectangle in the center of the display. The
rectangle subtended a visual angle of 1.0 degrees vertically and 1.5 degrees
horizontally. Subjects indicated their response by depressing one of two
buttons on a response box held with both hands. Response button assignments
were counterbalanced across subjects.

Procedure

The experimental procedure was identical to experiment 1, with the
exception that only the 500 msec SOA condition was included.

12

100-

, "" -. ,4 w

90" ." ./" .,

./ '. ' ,--
o, / ,,

70-' -

I"/

, I : /

>-. 70 / *9 .;/

60-u= :,;:,'

IJU' so--/,,'

3 0 i /---- 50540

.75 25
20.. ,- .

0 :,; 0 DELAY, 200 SOA

2 ,/5e - 15 DELAY, 200 SOA

,,........ 15 DELAY, 1000 SOA
10-

I I I ' I I I I
500 700 900 1100 1300 1500 1700

REACTION TIME

An examination of different mixtures of primary and secondary memory.

The data are presented as vincentized CDFs. The solid line represents

the 0 second delay, 200 msec SOA condition, the dashed line represents

the 15 second delay, 200 msec SOA condition. The dotted line represents

the data obtained in the 15 second delay, 1000 SOA condition (adjusted

for the main effect of SOA). Three mixture conditions are presented

which represent 25/75, 50/50, and 75/25 mixtures of primary and secondary

memory. It is apparent that the data obtained in the 15 second delay,

1000 msec SOA condition falls between the 50/50 and 25/75 mixture
conditions. FIGURE 3

13

Experimental Design

The experiment included three delay conditions (0, 4, and 15 sec), and
two set sizes (2 and 4) in a Sternberg memory search task. Target and non-
target trials were equiprobable. Thus, the study was a 3 (delay) X 2
(memory load) X 2 (response type) factorial design. The order of within
subject conditions was counterbalanced across subjects and sessions.

ERP Recording

The electroencephalogram (EEG) was recorded from three midline sites
(Fz, Cz, and Pz according to the International 10-20 system; Jasper, 1958)
and referred to linked mastoids. The ground electrode was positioned on the
left side of the forehead. Electrooculogram (EOC) electrodes were placed
above and below the right eye. Electrode impedances did not exceed 5 KOhms.
Beckman 10 mn diameter Ag/AgCl biopotential electrodes were used at all
electrode sites. Scalp electrodes were affixed with Grass EEG paste.
Reference and ground electrodes were adhered with stomaseal adhesive
collars.

The EEG and EOG signals were amplified by Grass amplifiers (model
7P122), and filtered on-line using a high frequency cut-off point at 35 Hz
and a time constant equal to 8 sec for the high pass filter. Both EEG and
EOG were sampled for 2100 msec, beginning 100 msec prior to retrieval cue
onset. The data were digitized every 10 msec.

Stimulus Generation and Data Collection

Stimulus presentation and data acquisition were governed by a PDP 11/73
computer interfaced with a matrox display. Single trial EEG and EOG were
monitored on line. Digitized single trial data were stored on magnetic tape
for subsequent analyses. EOG artifacts were corrected off-line (Gratton,
Coles, and Donchin, 1983).

Results and Discussion: Experiment 2

The reaction time results replicated the effects obtained in experiment
1 and will therefore only be discussed briefly. Reaction time increased as
a function of memory load (F(l,7)=8.5, p<.02, MSe=4998). The memory set
size slope was 21.0. msec/word. Reaction time also increased as a function
of delay (F(2,14)=9.1, p<.0l, MSe=9.1). The increase in reaction time from
the 0 to the 15 msec delay condition was 126 msec. In contrast to
experiment 1, targets were responded to faster than non-targets
(F(1,7)=138.6, p<.001, MSe=1403).

Figure 4 a-f presents the grand average ERPs collected in the
experiment. Each panel presents one of the twelve experimental conditions.
A description of the experimental condition is presented above each panel.
Within each panel the ERPs for each electrode site are over-plotted. Fz is
represented by the solid line, Cz by the dashed line, and Pz by the dotted
line. The abscissa represents latency, in milliseconds, from presentation
of the retrieval cue (Sl). The recording epoch begins 100 msec pre S1. The
average of this 100 msec interval (within each electrode site) is used to
remove baseline shifts. The dashed vertical line indicates the onset of the

14

retrieval cue (SI). The dotted vertical line represents the onset of the
Sternberg probe stimulus (S2). The ordinate represents amplitude in
microvolts. Positive changes are reflected as a downward deflection. The
number in the upper left-hand corner of each panel indicates the number of
single trials in the average.

Perusal of the ERPs reveals several distinct ERP components. Following
S onset, an early negative deflection appears in several of the tracings.
The latency of this component is between 100 and 110 msec and the component
is frontal-central maximal. We identify this component as the NIOO. The
second EPR component clearly identifiable following S1 is P200, a positive
deflection occurring approximately 200 msec after S1 onset. The third ERP
component is 200, a negative deflection in the ERP following P200 with
frontal-central maximal distribution and a latency from 250 to 350 msec.
The last ERP component elicited by the processing of the information
conveyed by S1 is the P300. The P300 component has a parietal maximal
distribution with a minimum latency of 300 msec. P300 latency to S1 occurs
between 450 to 500 msec following S1 onset.

Examination of the ERP components elicited by the processing of the
Sternberg probe (52) is complicated somewhat by baseline shifts due to S1
processing. Tb compensate for this, the ERPs were reaveraged and a new
baseline interval from onset of S2 to 100 msec post S2 onset was used to
remove baseline differences. Figures 5 a-f present the reaveraged ERPs. It
should be noted that the different baselines do not result in changes in the
ERP component structure, nor in estimates of the latency of these
components. However, without a proper baseline, any base to peak amplitude
measures will be biased.

Examination of the ERP components following S2 reveals a component
structure similar to Si. The components are NOO (a negativity with a
latency from 100 to 110 msec post S2), P200 (a positivity with a latency
from 200 to 250 msec which is somewhat more difficult to identify, compared
with the P200s elicited by SI), W00 (a negativity with a latency from 200
to 350 msec), and P300 (a positivity with a latency from 300 to 700 msec).
It should be noted that the latency values are estimates of the average
latency within a condition. The range of the P300 on single trials is from
300 to 1200 msec.

Because the focus of experiment 2 was to dissociate stimulus evaluation
processing from response-related processing, our analyses will focus on the
P300 component of the ERP. We have therefore overplotted the Pz ERPs for
the different delay conditions in figures 6 and 7. The baseline used for
figure 6 a-b is from 100 msec pre S1 to SI. The baseline used for figure 7
a-b is from 2 to 100 msec post S2. A description of the experimental
condition appears above each panel. The solid line represents the 0 delay
condition, the dashed line represents the 4 second delay condition, and the
dotted line represents the 15 second delay condition. To examine latency
and amplitude differences in the P300, an estimate was derived for each
single trial. The P300 was identified by computing the correlation between
the positive segment of a .5 Hz sine wave and the Pz electrode (described as
Pz cross correlation in appendix K). The correlations were computed at 10
msec lags within an interval from 300 to 600 msec post Si and 300 to 1200
msec post S2 for the S1 and S2 P300s, respectively. The point at wi ".ch the

15

MEMSIZ 2 DELAY 4 TARGET

235

.,* ',

• I. \ ..

I I 4

MEMSIZ 2 DELAY 0 TARGET
-200 263

I I \
, , _ \-"-

'i

200 I
-100 200 500 800 1100 1400 1700 2000

Grand average scalp distribution ERPs from experiment 2. Ten subjects

are included in the average. The baseline subtracted from each waveform

is from 100 msec pre-Si to Si. The number of trials included in each

average is displayed in the upper left-hand portion of each plot. The

solid line represents the Fz electrode, dashed, Cz, and dotted Pz. The

experimental condition is presented above each panel. Figures a-f

contain the 12 experimental conditions.

FIGURE 4 A

16

MEMSIZ 4 DELAY 0 TARGET

224

MEM SIZ 2 DELAY 15 TARGET
-200 -203

-100 200 500 800 1100 1400 1700 2000

FIGURE 4 B

17

MEMSIZ 4 DELAY 15 TARGET

1175

I° *

II I IiI

MEM SIZ 4 DELAY 4 TARGET
-200

210

I,, .

200

-100 200 500 800 1100 1400 1700 2000

FIGURE 40C

18

MEMSIZ 2 DELAY 4 NONTARGET

1218

MEM SIZ 2 DELAY 0 NONTARGET
-200 220

200g
-100 200 500 800 1100 1400 1700 2000

FIGURE 4 D

19

MEMSIZ 4 DELAY 0 NONTARGET

216

L

MEMSIZ 2 DELAY 15 NONTARGET
-200 1163

200 i

-100 200 500 800 1100 1400 1700 2000

FIGURE 4 E

20

MEMSIZ 4 DELAY 15 NONTARGET

j 145

.121

maximal correlation occurred was defined as the latency of the P300. The
slope of the correlation between the template and the ERP was defined as the
amplitude of the P300. The greater the slope, the larger the amplitude of
the P300. Note that this procedure is unaffected by baseline shifts and is
preferable to base to peak measures in this instance.

Examination of the latency of the P300s elicited by S1 revealed a
significant response type X memory load X delay interaction (F(2,14)-11.5,
p<.0l, MSe=244). However, the effects of delay were non-monotonic and there
was no coherent pattern in the dc.ta. Because the interaction included the
response type facl-or and the P300s were elicited prior to S2, this effect is
probably unreliable. No other S1 P300 latency effects attained
significance.

Examination of the amplitude of the S1 P300s revealed that P300
amplitude increased as a function of delay (F(1,7)-4.2, p<.02, MSe=229). The
effect was non-mnotonic, with the smallest P300s elicited in the 0 delay
condition. The difference between the 4 and 15 second delay conditions did
not significantly differ (p<.05). This increase in P300 amplitude in the 4
and 15 second delay conditions may reflect an increase in the allocation of
processing resources as subjects switch from the distractor task to the
Sternberg task. Additional research is required to fully interpret these
differences.

Examination of the P300s elicited by S2 provides the critical analysis
of experiment 2. P300 latency increased . fimction of memory load
(F(1,7)=6.6, p<.05, MSe=4070). The mne -ry set size slope was 16.5
msec/item. P300 latency incr-eaoed as a function of delay (F(2,14)=19.4,
p<.001, MSe=1718). The difference between the 0 and 15 second delay
conditions was 59 msec. This effect of delay on P300 latency supports the
hypothesis that the increase in LC:eacticn time from primary to secondary
memory is due at least in part to the inclusion of a retrieval process
inserted prior to the memory comparison process in secondary memory
conditions. This interpretation is bolstered by the finding that P300
latency was sensitive to both memory load and delay, suggesting that the
P300 was elicited after the memory comparison process. No other latency
effects attained significance. In contrast to reaction time, P300 latency
to targets was not significantly different from non-targets (F(1,7)=2.8,
p<.10, MSe=5298).

The P300 latency data suggest that the reaction time differences
between targets and distractors is due to response-related processing.
Furthermore, the effect of the delay was nearly twice as large with reaction
time as with P300 latency. This suggests that delay may affect both
stimulus evaluation and response-related processing. To evaluate the
contribution of response-related processing, a comparison of the single
trial RT/P300 ratio was conducted. By comparing the relative changes in
reaction time and P300 latency, it is possible to localize the effects of
different manipulations on information processing. Increases in response-
related processing are identified as increases in the RT/P300 ratio. A
ratio of 1.0 reflects the co-occurrence of reaction time and the peak of the
P300. Ratios less than 1.0 indicate that the reaction time preceded peak
P300 latency and ratios greater than 1.0 indicate that the peak P300 latency
preceded the overt response. It is important to note that absolrte 1C/P300

22

MEMSIZ 2 DELAY 4 TARGET

235

I

MEMSIZ 2 DELAY 0 TARGET

-200 1263

.1 " " I.'.

I / 1

r,,.1A/ \. /,.',- -,

I n /

200 '

-100 200 500 800 1100 1400 1700 2000

Grand average scalp distribution ERPs from experiment 2. Ten subjects
are included in the average. The baseline subtracted from each waveform
is from S2 to 100 msec post-S2. The number of trials included in each
average is displayed in the upper left-hand portion of each plot. The
solid line represents the Fz electrode, dashed, Cz, and dotted, Pz. The
experimental condition is presented above each panel. Figures a-f contain
the 12 experimental conditions.

FIGURE 5 A

23

MEMSIZ 4 DELAY 0 TARGET
224

MEMSiZ 2 DELAY 15 TARGET
120 203

*1:-**I.-.'

200
-100 200 500 800 1100 1400 1700 2000

FIGURE 5 B

24

MEMSIZ 4 DELAY 15 TARGET

1175

-200 MEM SIZ 4 DELAY 4 TARGET

-200

-100 200 500 800 1100 1400 1700 2000

FIGURE 5 C

25

MEMSIZ 2 DELAY 4 NONTARGET

1218

.v1:

MEM SIZ 2 DELAY 0 NONTARGET
-200 1

-200

1220

-"

2 0 I I I I I I
-100 200 500 800 1100 1400 1700 2000

FIGURE 5 D

26

MEMSIZ 4 DELAY 0 NONTARGET

1216

I •: I .

.

r-

I -

I \ /

I I I I I

-200 MEMSIZ 2 DELAY 15 NONTARGET
I1163

200 I
-100 200 500 800 1100 1400 1700 2000

FIGURE 5 E

27

MEMSIZ 4 DELAY 15 NONTARGET

1145

a it

I..SI 4 EAY4NNTR
-200 118

200~

-200 1800 0 0 1010 7020

FIGURE 5 F

28

MEMSIZ 4 TARGET MEM SIZ 4 NONTAROET

v.

I 3I

-200 ~ ~ ,Z 2 AGT-0 -MI OTR

20 200I

The baeln sutace fro eahwvfr sfo 00me r/ 1t h

solid~ lin rersnste0dlycniin tedse ierpeet h
seoddlay codtin an th otdln ersnt h 5scn ea

citin Th exeietlcniini ecibe bv ahpnl

FIUR 6

MEMSZ 2 ARGE MEMIZ 2NONTR29

ratios are less meaningful than the relative differences between
experimental conditions. This, in part, is due to the fact that we measure
the latency of the L of the P300 rather than the onset of the P300.

Examination of the single trial RU/P300 ratio revealed an increase from
targets to non-targets (F(1,7)=17.3, p<.0l, MSe=11554), suggesting an
increase in the response-related processing for non-targets. This increase
in response-related processing could be due to response biases, uncertainty,
rechecking, or some combination of these factors. The RT/P300 ratio
increased as a function of delay (F(2,14)=5.3, p<.Ol, MSe=15266). This is
consistent with the hypothesis that some of the increase in reaction time as
a function of delay is due to response-related processing. Finally, the
RT/P300 ratio increased at a greater rate for non-targets than for targets
(F(2,14)=7.3, p<.006, MSe=6569). Post hoc co)arisons revealed that this
interaction was due to a large increase in the W/P300 ratio for the non-
target delay 15 condition and may be the result of uncertainty about the
response, or to a rechecking.

Examination of the amplitude of the P300s elicited by S2 revealed a
significant response type X delay interaction (F(2,14)=3.9, p<.05, MSe=01).
Post hoc analysis revealed that P300 amplitude was smaller for the 15 second
delay condition for targets and larger for the i5 second delay condition for
non-targets.

Conclusion: Experiment 2

Experiment 2 was conducted to examine the hypothesis that the increase
in reaction time from primary to secondary memory was due to the insertion
of a retrieval process prior to the memory comparison process, to response-
related processing, or both. The evidence obtained using P300 latency as an
index of stimulus evaluation processing suggests that both stimulus
evaluation and response-related processing factors are affected by delay.
These results suggest that the retrieval of information from secondary
memory may be more rapid than the reaction time estimates suggest. The
results also suggest that secondary memory includes a retrieval process
inserted prior to the memory comparison process.

30

MEM 81 4 TARGET MEM SIZ 4 WONTAROET

-200 MEMSIZ 2 TARGET .20MEMSIZ 2 NONTARGET

Ii

A..

.. I \ (A ".' .
t j.1 I*.

i "\ I'

Ii I

200 _ _• .200 _

-100 200 500 800 1100 1400 1700 2000 -100 200 500 800 1100 1400 1700 2000

Grand average Pz overplots of delay. Ten subjects are included in the average.
The baseline subtracted from each waveform is from S2 to 100 msec post-S2. The
solid line represents the 0 delay condition, the dashed line represents the 4
second delay condition, and the dotted line represents the 15 second delay
condition. The experimental condition is described above each panel.

FIGURE 7

31

FOOTNOTES

Footnote 1. The terms primary and secondary memory originate with William
James (1890, p. 646-648). Contemporary treatments can be found by Waugh and
Norman (1965), Craik and Levey (1976), Atkinson and Shiffrin (1968),
Baddeley and Hitch (1974), and Baddeley (1981). According to James, primary
memory reflects the contents of consciousness, while secondary memory refers
to information that no longer is in consciousness. Following Waugh and
Norman (1965) primary memory can be defined in terms of its limited capacity
and the rapid decay of information if rehearsal is not permitted. Rehearsal
serves to maintain information in primary memory and transfer the
information to secondary memory. Secondary memory is characterized as a
large capacity storage system with a low forgetting rate.

Footnote 2. Care was employed selecting the words so as not to form any
obvious categories and subjects were instructed not to use elaborative/
chunking strategies when memorizing the memory set. These manipulations
were intended to minimize any effectiveness of the compression of the memory
set into subgroups of categories. Furthermore, since this was a VM task, it
would be quite difficult for subjects to form associations for every
pairwise and four-way comparison.

Footnote 3. Two sukjuicts (subjects 8 and 9, see appendix N) were excluded
from the analysi. 'vcause of excessive error rate, resulting in a total
sample size r

32

.!.

REFERENCES

Anders, T. R., & Fozard, J. L. (1973). Effects of age upon retrieval from
primary and secondary memory. Developmental Psychology, 9, 411-415.

Atkinson, R. C., & Shiffrin, R. M. (1968). Human memory: A proposed system
and its control processes. In K. W. Spence & J. T. Spence (Eds.), The
Psychology of Learning and Motivation: Advances in Research and Theory.
Vol. 2, (pp. 89-195). New York: Academic Press.

Baddeley, A. (1981). The concept of working memory: A view of its current
state and probable future development. Cognition, 10, 17-23.

Baddeley, A. D., & Hitch, G. (1974). Working memory. In G. H. Bower (Ed.),
The Psychology of Learning and Motivation. Vol. 8. New York:
Academic Press.

Cavanagh, J. P. (1972). Relation between the immediate memory span and
memory search rate. Psychological Review, 79, 525-530.

Clifton, C., Jr., & Birenbaum, S. (1970). Effects of serial position and
delay of probe in a memory scan task. Journal of Experimental
Psychology, 86, 69-76.

Corballis, M. C., Kirby, J., & Miller, A. (1972). Access to elements of a
memorized list. Journal of Experimental Psychology, 94, 185-190.

Coyne, A. C., Allen, P. A., & Wickens, D. D. (1986). Influence of adult age
on primary and secondary memory search. Psychology and Aping, I, 187-
194.

Craik, F. I. M., & Levy, B. A. (1976). The concept of primary memory. In
W. K. Estes (Ed.). Handbook of learning and cognitive processes. Vol.
4, (pp. 133-175). Hillsdale, NJ: Erlbaum.

Donders, F. C. (1868) On the speed of mental processes. In: W. G. Koster
(Ed. and trans.) Attention and Performance II. (pp. 412-431).
Amsterdam: North-Holland (1969).

Flexser, A. J. (1978). Long-term recognition latencies under rehearsal-
controlled conditions: Do list-length effects depend on active memory?
Journal of Experiment Psychology: Human Learninc and Memory, 4, 47-54.

Forrin, B., & Morin, P. E. (1969). Recognition times for items in short-and
long-term memory. In W. G. Koster (Md.), Acta Psychologica 30
Attention and Performance II. (pp. 126-141). Amsterdam: North-
Holland Publishing Company.

Gratton, G., Coles, M. G. H., & Donchin, E. (1983). A new method for of f-
line removal of ocular artifact. Electroencephaloaraphv and Clinical
Neurophvsioloy, 55, 468-484.

James, W. (1890). The Principles of Psychology. New York: Holt.

33

Jasper, H. H. (1958). The ten--twenty electrode system of the International
federation. Electroencephaloqraphy and Clinical Neurophysioloqy, i0,
371-375.

Kucera, H., & Francis, W. N. (1967). Computational Analysis of Present Day
English, Providence RI: Brown University Press.

Magliero, A., Bashore, T. R., Coles, M. G. H., & Donchin, E. (1984). On the
dependence of P300 latency on stimulus evaluation processes.
Psychophysiology, 21, 171-186.

McCarthy, G., & Donchin, E. (1981). A metric for thought: A comparison of
P300 latency and reaction time. Science, 211, 77-80.

Monsell, S. (1978). Recency, immediate recognition memory, and reaction
time. Cognitive Psychology, 10, 465-501.

Murdock, B. B., Jr. (1961). The retention of individual items. Journal of
Experimental Psychology, 62, 618-625.

Muter, P. (1980). Very rapid forgetting. memory and Cognition, a, 174-179.

Peters, G. L. (1974). Coding processes in active and inactive memory.
Journal of Experimental Psychology, 102, 423-430.

Peterson, L. R. & Peterson, M. J. (1959). Short-term retention of
individual verbal items. Journal of Experimental Psychology, 58, 193-
198.

Ratcliff, R. (1979). Group reaction time distributions and an analysis of
distribution statistics. Psychological Bulletin, 86, 446-461.

Sternberg, S. (1966). High-speed scanning in human memory. Science, 153,
652-654.

Sternberg, S. (1969a). Memory-scanning: Mental processes revealed by
reaction-time experiments. American Scientist, 51, 421-457.

Sternberg, S. (1969b). The discovery of processing stages: Extensions of
Donders' method. Acta Psychologica, 30, 276-315.

Sternberg, S. (1975). Memory scanning: New findings and current
controversies. Quarterly Journal of Experimental Psychology, 21, 1-32.

Sternberg, S., Kroll, R. L., & Nasto, B. A. (1969). Retrieval from long-
term vs. active memory. Paper presented at the meeting of the
Psychonomics Society, St. Louis.

Vincent, S. G. (1912). The function of the viborissae in the behavior of
the white rat. Behavioral Monographs, i, No. 5.

Waugh, N. C., & Norman, D. A. (1965). Primary memory. Psychological
Review, 71, 89-104.

34

Wickens, D. D., Moody, M. J., & Dow, R. (1981). The nature and timing of
the retrieval process and of interference effects. Journal of
Experimental Psychology: General, 110, 1-20.

Wickens, D. D., Moody, M. J., & Vidulich, M. (1985). Retrieval time as a
function of memory set size, type of probes, and interference in
recognition memory. Journal of Experimental Psychology: Learning,
Memory, and Cognition, 11, 154-164.

35

Appendix A

PMSM.PAS This is the Pascal source code for the primary/secondary memory
experiment. The program is written in Turbo Pascal and assumes an enhanced
graphics adapter (EGA) card. The program should be compiled prior to
initial execution. Two INCLUDE files are included at compile time: CRT.PAS
and TIMER.PAS. The source for these procedures can be found in appendix B
and C, respectively. The inclusion of these procedures is accomplished by
the {$I CRT.PAS} and {$I TIMER.PAS} commands at the beginning of the
program.

A description of the experimental procedure can be found in the methods
section of the paper. Instructions to subjects are included as appendix M.
To run the program an input stimulus file and an output data file must be
specified e.g., Type: PMSM <input file> <output file>. The program will not
proceed unless the stimulus input file exists on disc and the output data
file does not exist on disc. A sample stimulus input file is included as
appendix F. This file contains 20 word stimuli, the response assignment keys

for 'Yes' and 'No' responses, and 96 primary/secondary memory trial blocks.
The program presents the 96 trial blocks (run time approximately 20 minutes)
and then writes 108 identification parameters for each block to the output
file. Program PMSM pauses prior to the first block and after every 16 trial
blocks to provide rest breaks. Subjects continue the program by pressing
the enter key. Several options may be specified by pressing designated keys
during run time:

-Q- will quit the program and write the output to disc.

'P' will pause the program. To continue, press enter.

-F" will provide trial by trial feedback to subjects. Once this option is
specified, it remains in effect throughout the 96 trial blocks.

36

Modification date: Jan 12, 1988
Programmer: David Strayer
University of Illinois

Program to control primary/secondary memory study

ids output by the program:

id(1) - subject number
id(2) - session
id(3) - block

id(4) - delay
id(5) - soa of retrieval cue
id(6) - size of memory set
id(7) - constant (1) or varied (2) mapping
id(8) - ASCII code for Yes button
id(9) - ASCII code for No button

Running memory ids

Trial 1

id(10) - running memory stimulus
id(11) - rt (for running memory trial)
id(12) - stim type for running memory (1-target, 2-nontarget)
id(13) - response for running memory (0-none, 1-target, 2-nontarget)
id(14) - correctness for running memory: O-no response, 1-hit,

2=correct rejection, 3-false alarm, 4-miss

Trial 2

id(15) - running memory stimulus
id(16) - rt (for running memory trial)
id(17) - stim type for running memory (1-target, 2-nontarget)
id(18) - response for running memory (0-none, 1-target, 2-nontarget)
id(19) - correctness for running memory: O-no response, 1-hit,

2-correct rejection, 3-false alarm, 4-miss

Trial 3

id(20) - running memory stimulus
id(21) - rt (for running memory trial)
id(22) - stim type for running memory (1-target, 2-nontarget)
id(23) - response for running memory (0-none, 1-target, 2-nontarget)
id(24) - correctness for running memory: 0-no response, 1-hit,

2-correct rejection, 3-false alarm, 4-miss

Trial 4

id(25) - running memory stimulus

id(26) - rt (for running memory trial)

37

id(27) - stim type for running memory (1=target, 2-nontarget)
id(28) - response for running memory (0=none, ltarget, 2-nontarget)
id(29) - correctness for running memory: O=no response, I-hit,

2=correct rejection, 3=false alarm, 4=miss

Trial 5

id(30) - running memory stimulus
id(31) - rt (for running memory trial)
id(32) - stim type for running memory (l=target, 2=nontarget)
id(33) - response for running memory (O=none, 1=target, 2=nontarget)
id(34) - correctness for running memory: O=no response, l=hit,

2=correct rejection, 3=false alarm, 4=miss

Trial 6

id(35) - running memory stimulus
id(36) - rt (for running memory trial)
id(37) - stim type for running memory (l=target, 2-nontarget)
id(38) - response for running memory (0=none, 1-target, 2-nontarget)
id(39) - correctness for running memory: O=no response, 1=hit,

2=correct rejection, 3=false alarm, 4=miss

Trial 7

id(40) - running memory stimulus
id(41) - rt (for running memory trial)
id(42) - stim type for running memory (I=target, 2=nontarget)
id(43) - response for running memory (Q=none, 1=target, 2-nontarget)
id(44) - correctness for running memory: O=no response, 1=hit,

2=correct rejection, 3=false alarm, 4=miss

Trial 8

id(45) - running memory stimulus

id(46) - rt (for running memory trial)
id(47) - stim type for running memory (1-target, 2=nontarget)
id(48) - response for running memory (O=none, 1-target, 2-nontarget)
id(49) - correctness for running memory: 0-no response, 1-hit,

2=correct rejection, 3=false alarm, 4-miss

Trial 9

id(50) - running memory stimulus
id(51) - rt (for running memory trial)
id(52) - stim type for running memory (1=target, 2-nontarget)
id(53) - response for running memory (0=none, 1-target, 2-nontarget)
id(54) - correctness for running memory: 0-no response, 1-hit,

2=correct rejection, 3-false alarm, 4-miss

Trial 10

38

id(55) - running memory stimulus
id(56) - rt (for running memory trial)
id(57) - stim type for running memory (1-target, 2-nontarget)
id(58) - response for running memory (0-none, 1-target, 2-nontarget)

id(59) - correctness for running memory: O-no response, 1-hit,
2=correct rejection, 3=false alarm, 4-miss

Trial 11

id(60) - running memory stimulus
id(61) - rt (for running memory trial)
id(62) - stim type for running memory (1-target, 2-nontarget)
id(63) - response for running memory (0-none, 1-target, 2-nontarget)
id(64) - correctness for running memory: O-no response, 1-hit,

2=correct rejection, 3=false alarm, 4-miss

Trial 12

id(65) - running memory stimulus
id(66) - rt (for running memory trial)
id(67) - stim type for running memory (1-target, 2-nontarget)
id(68) - response for running memory (0-none, 1-target, 2-nontarget)
id(69) - correctness for running memory: 0-no response, 1-hit,

2=correct rejection, 3=false alarm, 4-miss

Trial 13

id(70) - running memory stimulus
id(71) - rt (for running memory trial)
id(72) - stim type for running memory (1-target, 2-nontarget)
id(73) - response for running memory (0-none, 1-target, 2-nontarget)
id(74) - correctness for running memory: 0-no response, 1-hit,

2-correct rejection, 3-false alarm, 4-miss

Trial 14

id(75) - running memory stimulus
id(76) - rt (for running memory trial)
id(77) - stim type for running memory (1-target, 2-nontarget)
id(78) - response for running memory (0-none, 1-target, 2-nontarget)
id(79) - correctness for running memory: 0-no response, 1-hit,

2-correct rejection, 3-false alarm, 4-miss

Trial 15

id(80) - running memory stimulus
id(81) - rt (for running memory trial)
id(82) - stim type for running memory (1-target, 2-nontarget)

id(83) - response for running memory (0-none, 1-target, 2-nontarget)
id(84) - correctness for running memory: O-no response, 1-hit,

39

2=correct rejection, 3=false alarm, 4=miss

Sternberg ids

id(85) - memory set word #1, letter #1
id(86) - memory set word #1, letter #2
id(87) - memory set word #1, letter #3
id(88) - memory set word #1, letter #4

id(89) - memory set word #2, letter #1
id(90) - memory set word #2, letter #2
id(91) - memory set word #2, letter #3
id(92) - memory set word #2, letter #4

id(93) - memory set word #3, letter #1
id(94) - memory set word #3, letter #2
id(95) - memory set word #3, letter #3
id(96) - memory set word #3, letter #4

id(97) - memory set word #4, letter #1
id(98) - memory set word #4, letter #2
id(99) - memory set word #4, letter #3

id(100) - memory set word #4, letter #4

id(1O1) - rt (for Sternberg trial)
id(102) - stim type (l=target, 2=nontarget)
id(103) - response (O=none, 1=target, 2=nontarget)

id(104) - correctness: O=no response, 1-hit, 2-correct rejection,
3=false alarm, 4=miss

id(105) - stimulus presented, letter #1
id(106) - stimulus presented, letter #2
id(107) - stimulus presented, letter #3
id(108) - stimulus presented, letter #4

40

Program pmsm ;
{$C-} {disable cntrl c option}
{$I TIMER.PAS} {include timer routines)
{$I CRT.PAS} {CRT control routines (synch and cursor manipulation))

var

ID : array[1..96,1..108] of integer;
Condition codes : array[l..96,1..7] of integer;

CM targ: array[l..5,1..4] of char;

CM dist: array[l..5,1..4] of char;
VM stimuli: array[l..10,1..4] of char;
Targ: array[1..5,1..4] of char;
Dist: array[l..5,1..4] of char;

stmdur, (duration of stimulus)

nback, {number back in running memory task)

block, {block number)
subject, (subject number}

session, (session number)
soa, (stimulus onset asynchrony)

cmvm, {consistent (1) or varied (2) mapping)
memsiz, {memory set size)

stype, {stim type (pq or neg) for Stern trial}

delay: integer; { delay irom memory set to probe)

Yes button: char; {key to press for positive response)

No button: char; {key to press for negative response)

s : TimeStamp; {Timer variable for TimerMilli calls)

Numfile, {true if number of files is 2)
Newfile, {true if output file does not exist on disc)
Exists, {true if input file exists on disc)

scrnon, (true if stim on, false if stim off)
pause, {true if P key pressed)
fback, {true if F key pressed)
done : Boolean; {true if Q key pressed)

Infile,
Outfile: Text;

41

Function RandomTwixt(low,high: Integer): Integer

f Procedure to return a random integer between the values of low and high .

begin
RandomTwixt :=Random(high-low41)+low;
end;

42

P:3cedure Init_.all; {intializes variables

var
1,
J: integer;

begin

CrtCursorOff; {turn off the cursor)
clrscr; {clear the screen}
stmdur 200; {stimulus duration)
nback :=2; {numnber back in r-memory}
block :=0; (block counter)
Timerlnit; {initializes the clock)
done false; {true if Q key pressed)
fback :=false; {true if F key pressed)
pause :=true; {true if P key pressed}

for i :=I to 96 do
for j I to 108 do
begin
id[i,j] :- 0; (zero id array}

end;

end;

43

Procedure Read-stim;

var
1,
j : integer;

begin

for i : 1 to 5 do {read in CM target stimuli}
begin
readln(Infile,CM targ[ij);

end;

for i :=1 to 5 do {read in CM distractor stimuli)
begin
readln(Infile,CM dist[ij);

end;

for i 1= to 10 do {read in VM stirnuli}
begin
readln(Infile,VM stimuli[i]);

end;

readln(Infile,Yes-button,No button); {read key assignments)

for J:= 1 to 96 do {read in condition codes}

begin
for i:= 1 to 7 do read(Infile,condition-codes[j,iI);
if j < 96 then readln(Infile);

end;

end; {read-stim)

44

Procedure Stim Sel; {shuffle stimuli and choose targ and dist stimuli)

var

tempi char;
loop, (loop counter)

k :integer; fvariable equal to a randomly selected array position)

begin

block := block+1; fincrement block counter)
if block = 96 then done :- true; (exit program after this block)
if (block mod 16) = 0 then pause :- true;

subject :=condition -codes[block,1];
session :=condition _codeslblock,21;
soa :=condition codes[block,3];
delay :=condition-codes[block,4];

cmvm :=condition codesfblock,5];
memsiz :=condition _codes[block,6];
stype :=condition codes~block,71;

(store id values)

idfblock,1] :subject;
id[block,2] : session;
idfblock,3] : block;
id[block,4] : delay;
idfblock,5] : soa;
id[block,6] : memsiz;
id[block,71 :-cmvm;

id[block,8] :-ord(Yes button);
id[block,9] :-ord(No button);

for k :- 1 to 10 do
beg in

for loop :- 1 to 5 do (permute CM targets)
beg in

j :- RandomTwixt(I,5);
for i :- 1 to 4 do

begin
tempi :- CM targ~j,i];
CM targ[j,i] :- CM targ(loop,i];
CM targ~loop,il :- tempi;

end; (for)
end; (for)

45

for loop := I to 5 do {permute CM distractors}
begin

j := RandomTwixt(1,5);
for i := I to 4 do

begin
templ := CM dist[j,i];
CM disttj,i] := CM dist[loop,i];
CM dist{loop,i] := templ;

end; {for}
end; {for}

for loop := 1 to 10 do {permute VM array}
begin

j := RandomTwixt(1,10);

for i := 1 to 4 do
begin
templ := VM stimuli[j,iJ;
VM stimuli[j,i] := VM stimuli[loop,i];
VM stimuli[loop,i] := templ;

end; {Tor}
end; {for}

end; {for}

if cmvm = I then {choose CM stimuli}
begin

for j I to memsiz do
for i I to 4 do

begin
targ[j,iJ := CMtarg[j,i]; {target array)

end;

for j 1 to 5 do
for i I to 4 do

begin
dist[j,i] :- CMdist[j,i]; {distractor array}

end;

end;

if cmvm 2 then {choose VM stimuli}
begin

for j :- 1 to memsiz do
for i :1 1 to 4 do

begin
targ[j,i] := VM stimuli[j,i]; {target array}

end;

46

for J :- +meinsiz to 5+memsiz do
for 1 : 1 to 4 do

begin
dist[J-memsiz,iJ : VM stimuli[j,i]; {distractor array)

end;

end;

end; {stimulus select}

47

Procedure MemorySet; (procedure to present Memory Set}

var
j,
i: integer;
word: string[4];
rpsponse: char;
begin

if keypressed then (clear the Kbd buffer)
begin
read(kbd,response);
if upcase(response) = "Q' then done := true;
if upcase(response) = 'F' then fback : true;
if upcase(response) = 'P" then pause := true;

end; (if/then}

for i := I to memsiz do
begin (presentation of memory set)

if memsiz = 2 then gotoXY(27+(i*8),8); {position cursor)
if memsiz = 4 then gotoXY(19+(i*8),8); (position cursor)
word :f targ[i,lJ+targ[i,2]+targ[i,3]+targ[i,4];
writeln(trm,word); (turn on memory set)
for j :=I to 4 do id[block,80+(4*i)+j] :-ord(targ[i,j]);

end;

TimerStamp(s); {start the clock}

while TimerMilli(s) < 3000 do;
clrscr; {turn off memory set}

while TimerMilli(s) <4500 do;

end; (memory set procedure)

48

..

Procedure RunTrial; {procedure to present Run trip] }

var

RT,
pos.neg,
itrl,
jstim: integer;

lstim: array[l..3] of integer;

response : char;

begin

if delay > 0 then {if delay is 0, bypass running memory trials}

begin

for itrl:= I to Abs(delay) do
begin
if keypressed then {clear the Kbd buffer)

begin
read(kbd,response);
if upcase(response) = 'Q' then done : true;
if upcase(response) = 'F' then fback : true;
if upcase(response) = 'P' then pause true;

end; {if/then}

RT := -1; {set RT - -1)

TimerStamp(s); {start the clock)

{ prepare stimuli during pre-stimulus interval (5 msec))

posneg := RandomTwixt(1,3);
if posneg = 3 then pos-neg := 2;

if a positive trial, repeat stimulus nback
if a negative trial, select a new stimulus)

if posneg = 1 then {positive trial)
begin
if itrl <= nback then jstim :- RandomTwixt(1,9);
if itrl > nback then Jstim := istim[nback];
end;

if pos__neg - 2 then {negative trial)
begin
jstim :- RandomTwixt(1,9);

49

while jstim = lstim[nback] do
begin
jstim :=RandoinTwixt(1,9);
end;

end; {if/then}

{store successive stimuli}

lstim[3] lstim[2];
lstim[2] lstim[1];
lstim[fl jstini;
id[block,(itrl*5)+51 jstim;

while TimerMilli(s) < 5 do; (wait out prestimulus interval}

gotoXY(40,11); {positlon cursor}
CrtSyncEnd; (sync CRT}
TimerStamp(s); {start the clocki
if delay > 0 then
writeln(trm,jstim); [turn on stimulus)
scrnon :=true; [set screen flag}

while TimerMilli(s) < 1000 do

begin
if timerMilli(s) >= stmdur then
if scrnon then

begin
clrscr; (turn screen off}
scrnon :=false; {reset screen flag)

end;

if RT = -1 then {if no response has been made}

if keypressed then (check for keypressl
beg in

RT :=TimerMilli(s); {set RT = elapsed time}
read(kbd,response); {read which key was

pressedl

end; {if/then}
end;

classify trial ani store RT and stun type (1=hit, 2-cr, 3=fa, 4=miss)}

s0

id[block,(itrl*5)+61 :-rt;

id(block,(itrl*5)+71 :- po- neg;

idfblock,(itrl*5)+91 :m0;

if rt > 0 then

begin

if upcase(response) = Yes-button then
beg in
id[block,(itrl*5)+8] :- 1;
if id[block,(itrl*5)+71 - 1 then idfblock,(itrl*5)+9] 1
if id[block,(itrl*5)+71 - 2 then id~block,(itrl*5)+91 :-3;

end;

if upcase(response) = No button then
begin
id[block,(itrl*5)+8] :- 2;
if id[block,(itrl*5)+7] - 2 then id[block,(itrl*5)+9] :-2;

if id~block,(itrl*5)+7] - 1 then id(block,(itrl*5)+91 ; 4;
end;

end; {if/then}

end; (for)

end; {if/then}

end; (running memory procedure}

51

Procedure SternTrial; {procedure to present Stern trial }

var

RT,

J,
i: integer;

word: string[4];

response: char;

begin

if keypressed then {clear the Kbd buffer)

begin

read(kbd,response);
if upcase(response) = 'Q' then done := true;

if upcase(response) = 'F' then fback := true;
if upcase(response) = 'P' then pause := true;

end; {if/then}

RT := -1; {set RT = -1}

{ deliver retrieval cue if appropriate }

if soa > 0 then
begin
gotoXY(40,11); {set position on screen}

CrtSyncEnd; {sync CRT}
TimerStamp(s); {start the clock}

writeln(trm,'*'); {turn on retrieval cue}

gotoXY(40,11); {set position on screen)

while TimerMilli(s) < stmdur do; {wait for end of stmdur}

writeln(trm,' '); {turn off retrieval cue)

while TimerMilli(s) < soa do;

end; {if/then}

{ prepare stimuli during pre-stimulus interval (5 msec)}

TimerStamp(s); {start the clock}
gotoXY(39,13); {set position on screen}

if stype = I then {positive trial}
begin
i := RandomTwixt(I,memsiz);

word := targ[i,I]+targ[i,21+targ[i,31+targ[i,4];
for j :=I to 4 do id[block,104+j] :=ord(targ[i,j]);

end;

if stype = 2 then {negative trial}

52

begin
i :- RandomTwixt(1,5);
word :- distfi,l]+dist~i,21+dist[i,3]+dist[i,4];
for j :-I to 4 do id[block,104+j] :-ord(distfi,jl);
end;

while TimerMulli(s) < 5 do; (wait out prestimulus interval)

CrtSyncEnd; fsync CRT)
TimerStamp(s); (start the clock)
writeln(trm,word); {turn on stimulus)
scrnon := true; {set screen flag)

while TimerMilli(s) < 3000 do

beg in
if timerMilli(s) >- stmdur then
if scrnon then
begin
clrscr; (turn screen off)
scrnon :- false; (reset screen flag)

end;

if RT - -1 then (if no response has been made)

if keypressed, then (check for keypress)
beg in

RT :- TimerMilli(s); (set RT - elapsed time)
read(kbd,response); {read which key was

pressed)

end; (if/then)
end;

I classify trial and store RT and stim type (I-hit, 2-cr, 3-fa, 4-miss))

id~block,101] : rt;
idjblock,1021 :-stype;

id[block,103] :-0;

id[block,1041 :-0;

if rt > 0 then

begin

53

if upcase(response) =Yes button then
beg in
id[block,tO3] :=1;
if id[block,1021 1 then id[block,1O41I 1
if id[block,1021 2 then idjlblock,1041 3;

end;

if upcase(response) = No-button then
begin
id~block,103] := 2;
if id[block,1O2I 2 then id!Iblock,104] 2;
if id[block,1021 -1 then id[block,104] 4;

end;

end; {if/then}

end; {sternberg procedurel

54

Procedure Pause program; (procedure to pause program)

beg in

if pause then
begin
clrscr;
gotoXY(20,20);
if block - 0 then write(trm,' Hit ENTER to initiate program)
if block > 0 then write(trm,'Program paused: Hit ENTER to continue-);
while not keypressed do;
cl rsc r;
pause :- false;

end;
end;

55

Procedure Feed-back; {procedure to present feedback}

var
error,
corr,
1: integer;

begin
error :=0;
corr :=0;

if fback then
begin

if delay 0> 0 then
begin
for i := 3 to Abs(delay) do
begin
case(id[block,(i*5)+9]) of
0,3,4: error :=error+l;
1,2: corr :=corr+l;
end;

end;

gotoXY(25,23);
write(trw,' Run - ',corr,' correct trials out of ',corr+error);

end;

gotoXY(25,24);
case (id[block,104]) of
0: write (trm,' Stern -- No response detected');
1,2: write (trm,' Stern -- Correct response 2);
3,4: write (trm,' Stern -- Incorrect response 2
end;

end;
end;

56

Procedure Sessionend; (operations following session termination

var
lines,
i,
J: integer;

begin

timerkill; (kill the clock)

for i := 1 to 96 do
begin
lines :f 1;
for j :1 1 to 108 do

beg in
write(Outfile,id[i,J]:5); (write data to disc)
if(lines mod 16) - 0 then writeln(Outfile);
lines :- lines+l;

end;
writeln(Outfile);

end;

CrtCursorOn; (turn the cursor back on)
Close (Infile);
Close (Outfile);

end;

57

Begin {Main program loop}

Numfile := false;

if ParamCount > 2 then
begin
writeln(trm,'ERROR: Incorrect number of parameters');
writeln(trm);
writeln(trm,'Correct format: pmsm <stimulus file> <output file>');

end;

if ParamCount = 2 then
begin
Numfile := true;

Assign(Infile,ParamStr(1));
{$I-} Reset(Infile) {$I+};
Exists := (IOresult = 0);
if Not Exists then
writeln(trm,'ERROR: Input file does not exist);

if Exists then
begin
Assign(Outfile,ParamStr(2));
{$I-} Reset(Outfile) {$I+};
Newfile := (1Oresult > 0);
if Not Newfile then
writeln(trm,'ERROR: Output file already exists');
if Newfile then
Rewrite(Outfile);

end;

end;

If Numfile and Exists and Newfile then
begin
Init All; { initialize counters and loop variables}
ReadStim; { read in the stimuli and conditions from disc}

repeat
Pauseprogram; { holds program until key is struck}
Stim Sel; { selects targ and dist stimuli}
Memory_Set; { present Memory set }
Run Trial; { present Run trial }
Stern Trial; { present Stern trial }
Feed_back; { present feedback if option set}

until done;

Sessionend; {Write trials to disc and terminate session}
end;

58

END. ipmsrn.pas}

59

Appendix B

CRT.PAS This is the include file for CRT routines which permit

synchronization of the display and control of the cursor. The file is

automatically included with the {$I CRT.PAS} command in program PMSM.PAS.

60

procedure CrtModule ;external 'CRT-BIN'
procedure CrtSyncEnd ;external CrtModule[$31
procedure CrtSyncStart ; external CrtModule[$6J
procedure CrtCursorOn ; external CrtModule($91
procedure CrtCursorOff ; external CrtModule[$CJ

61

Appendix C

TIMER.PAS This is the timer procedure routines included with the {$I
TIMER.PAS} command in program PMSM.PAS. This code enables a clock used for
millisecond timing of events.

62

type
TimeStamp=

record
count ,low,high: Integer

end;

procedure TimerModule; external 'TIMER.BIN';
procedure Timerlnit ; external TimerModule[$3]
procedure TimerKill ; external TimerModule[$6];
procedure ~limerStamp(var stamp: TimeStamp) ; external TimerModule[$9]
function TimerMilli(stamp: TimeStamp): Integer ; external TimerModule[$CI

function UnsignedlntegerToReal(u: Integer): Real
var

x: Real

begin (UnsignedlntegerToReal}
if u=0 then x := u
else x := u+65536.0
UnsignedlntegerToReal :- x;

end { UnsignedlntegerToReal}

function TimeStampToReal(stamp: TimeStamp): Real
const

ShiftLeft16 = 65536.0;

var
rLow,rHigh,rCount: Real,
total: Real;

begin I TimeStampToReal}
rCount :- UnsignedlntegerToReal(stamp.count)
rLow :=UnsignedlntegerToReal(stamp.low);
rHigh :=Una ignedlnt eg erToReal(stamp. high)
total :=rHigh;
total :=total*ShiftLeftl6+rLow

total :=total*ShiftLeftl6+rCount

TimeStampToReal := total
end (TimeStampToReal I}

procedure Time~fDay(var hour,min,sec,milli: Integer)
const

TimeBase - 14.31818e+06
milliDiv = 1.193180e+03
secDiv - 1.193180e+I06
minDiv - 7.159080e+07
hourDiv - 4.295448e+09
SbiftLeftl6 - 65536.0

var
stamp: TimeStamp

63

total: Real

begin I TimeOfDay
TimerStamp(stamp)
total :=TimeStampToReal(stamp)

hour Trunc(total/hourDiv)
total :=total-tota1*hourDiv

min := Trunc(total/minDiv)
total := total-total*minDiv
sec := Trunc(total/secDiv)
total total-total*secDiv
milli :Round(total/milliDiv)

end {TimeOf Day}

64

Appendix D

STMGEN.PAS This turbo Pascal program generates the stimulus input files used
by program PMSM. The program reads 20 four letter words from file STM.DAT
(see appendix E), then prompts the user fur the 'Yes' and 'No' Key
assignments (which are to be entered on the same line without separation,
e.g., Z/ would specify the 'Yes' key is Z and the 'No' key is /). The
program will generate 96 trial blocks. Appendix F illustrates the output of
STMGEN. The files generated by this program can also be used by program
PMSM.FLX, the fortran version of PMSM which collects ERP data (see appendix
).

65

Modification date: Jan 16, 1988}

Program Stmgen;

Function RandomTwixt(low,high: Integer): Integer

{ Procedure to return a random integer between the values of low and high }
beg in
RandomTwixt : Random(high-low+1)+]ow;

end;

var

i,
J,
k,

loop,

temp,
itrial,

rep,
soa,

cmvm,

delay,
memsiz,
stype,

session,
subject: integer;

templ,

yesbutton,

no button: char;

stimuli: array[1..20,1..4] of char;

trial : array[1..96,1..71 of integer;

block : array[l..961 of integer;

sub: string[2];
ses: string[2];

infile : text;
outfile : text;

begin

write('Enter subject number ");

read(subject);
writeln;
write('Enter keys for yes and no

read(yesbutton,no button);

writeln;

66

{assign stimulus input file}

assign(infile,'stm.dat');
reset(infile);

(read words from disc}

for i :- I to 20 do (read in stimulil
beg in
readln(infile,stimuli[iJ);

end;

(close words file}
c±)ise(infile);

for session := 1 to 12 do
begin
itrial :- 0;
cmvm :- 2;
soa := 500;

for rep := 1 to 8 do
for delay :I I to 3 do
for memsiz :w I to 2 do
for stype :- 1 to 2 do

begin
itrial :- itrial+1;

block[itrial] := itrial;
trial[itrial,l] :- subject;
trial[itrial,21 :- session;
trial[itrial,31 :- soa;

if delay = 1 then triallitrial,4] :- 0;
if delay - 2 then trial(itrial,41 :- 4;
if delay - 3 then trial[itrial,4J :- 15;

trial[itrial,5] : cmvm;

trial[itrial,6] :- memsiz*2;
trial[itrial,7J :- stype;

end;

(permute condition}

for k :- 1 to 40 do
for loop :- 1 to 96 do

begin
j :- RandomTwixt(1,96);
temp :- block[J];
block[j] :- block[loop);
blocktloop] :- temp;

67

end;

{assign disc fiie}
str(subj ect ,sub);
str(session,ses);
writeln(trm,'Generating file: Stm',sub,_ ,ses,'.dat');
assign(outfile,'stm'+su+' '+ses-i-.dat);
rewrite(outfile);

{write stimulus files to disc}

for i :=1 to 20 do
begin
writeln(outf ile,stimuli(il)

end;

writeln(outfile,yes-button,no-button);

for 1 1= to 96 do
begin
for j :=1 to 7 do write(outfile,trial[blockfil,jl:S);
writeln(out file);

end;
close(outfile);

end;
end.

68

Appendix E

File STM.DAT Input file used by program STHGEN to generate stimulus sequence
files for program PMSM. The file contains 20 four letter words.

69

SIGN

CLAY
WISH
GAME

FARM
DEAL
HOUR

CLUB
HAIR
SHIP
FILE
RAIN
DUST
TONE
EDGE
TERM
M ARK
BANK
RoSE

EASE

7 UJ

Appendix F

File STMI-I.DAT Stimulus input file used by program PHSM. This file is the
output of program STMGEN. This file contains 20 word stimuli, the response
assignment keys for 'Yes' and 'No' responses, and 96 primary/secondary
memory trial parameters. Each of the 96 trials has seven parameters: They
are: subject, session, stimilus onset asynchrony (SOA) between the retrieval
cue and the probe, number of running memory trials between the memory set
and the probe (Delay), consistent (1) or varied mapping of stimulus to
response, memory set size, and stimulus response type (target-i,
non-target-2).

71

SIGN
CLAY
WISH
GAME
FARM
DEAL
HOUR
CLUB
HAIR
SHIP
FILE
,RAIN
DUST
TONE
EDGE
TERM
MARK
BANK
ROSE
BASE

/1 500 4 2 2 1
1 1 500 0 2 2 1
1 1 500 15 2 4 2

1 1 500 15 2 4 2
1 1 500 4 2 4 2
1 1 500 4 2 2 2
1 1 500 15 2 2 1

1 1 500 0 2 4 2
1 1 500 15 2 4 2
I 1 500 15 2 2 1

1 1 500 4 2 4 1
1 1 500 4 2 4 1

1 1 500 0 2 2 1
1 1 500 0 2 2 1

1 1 500 0 2 4 2
1 1 500 0 2 2 2
1 1 500 15 2 4 1
1 1 500 0 2 4 2

1 1 500 0 2 4 2

1 1 500 4 2 2 2

1 1 500 0 2 2 2
1 1 500 4 2 4 1

1 1 500 4 2 2 1

1 1 500 4 2 2 1

1 1 500 0 2 4 1
I 1 500 4 2 2 1
1 1 500 15 2 4 1

1 1 500 4 2 2 1
1 1 500 4 2 4 1

1 1 500 0 2 2 1

72

1 1 500 15 2 4 1
1 1 500 4 2 2 1
1 1 500 15 2 2 1
1 1 500 0 2 2 1
1 1 500 15 2 2 1
1 1 500 15 2 4 1
1 1 500 0 2 2 2
1 1 500 0 2 2 1
1 1 500 4 2 4 1
1 1 500 15 2 2 2
1 1 500 0 2 4 1
1 1 500 4 2 4 2
1 1 500 15 2 4 1
1 1 500 0 2 4 1
1 1 500 4 2 2 2
1 1 500 4 2 2 2
1 1 500 15 2 2 2
1 1 500 15 2 2 2
1 1 500 15 2 2 2
1 1 500 15 2 4 2
1 1 500 15 2 2 1
1 1 500 0 2 4 2
1 1 500 0 2 4 1
1 1 500 4 2 4 2
1 1 500 15 2 4 2
1 1 500 15 2 2 1
1 1 500 0 2 4 1
1 1 500 0 2 2 2
1 1 500 4 2 2 2

1 1 500 15 2 2 2
1 1 500 0 2 2 2
1 1 500 0 2 4 2
1 1 500 4 2 2 1

1 1 500 15 2 2 1
1 1 500 4 2 4 2

1 1 500 0 2 4 1
1 1 500 4 2 2 1
1 1 500 15 2 4 2
1 1 500 15 2 4 1
1 1 500 15 2 4 1
1 1 500 4 2 4 1
1 1 500 15 2 2 1
1 1 500 4 2 4 1
1 1 500 0 2 4 1

1 1 500 0 2 2 2
1 1 500 15 2 4 1
I 1 500 15 2 4 2

1 1 500 0 2 2 1
I 1 500 0 2 4 2
I 1 500 15 2 2 2
1 1 500 15 2 2 2

73

1 1 500 4 2 4 2
1 1 500 4 2 2 2

i 1 500 0 2 4 1
1 1 500 0 2 2 1
1 1 500 4 2 2 2
1 1 500 4 2 4 2
1 1 500 0 2 2 2
1 1 500 4 2 4 2

1 1 500 4 2 4 2
1 1 500 15 2 4 2
1 1 500 4 2 4 1
I 1 500 15 2 2 2
1 1 500 0 2 4 2
1 1 500 4 2 2 2
I 1 500 0 2 2 2

74

Appendix G

AVE.PAS Program to examine output file created by PMSM and give quick
summary statistics. This program will need to be customized for the
experimental conditions.

75

{$g512} {redirect input from disc}

{$p51 2} {redirect output to disc}

program ave;

{Modification date: Mar 20, 1987}

var
id : array[l..10 8] of integer;

ave : array [l..2,1..2,1..2,1..3,i..3,1..21 of real;

rmem : array [1..2,1..2,1..3,1..41 of real;

subj ect,

session,
lines,

delay,

soa,
memsiz,

cmvm,
posneg,
corr,
point,
i,
j: integer;

rt: real;

begin

{blank output array}

for cmvm : 1 to 2 do
for posneg 1 to 2 do
for memsiz : I to 2 do

for soa : 1 to 3 do
for delay I to 3 do

begin

ave[cmvm,posneg,memsiz,soa,delay,l] :- 0.0;

ave[cmvm,posneg,memsiz,soa,delay,2] :- 0.0;

rmem[cmvm,memsiz,delay,I] : 0.0;

rmem[cmvm,memsiz,delay,
21 0.0;

rmem[cmvm,memsiz,delay,3] := 0.0;

rmem[cmvm,memslz,delay,
41 : 0.0;

end;

{loop through data file - increment appropriate bins}

while not EOF do

begin

lines :=I;
for j := 1 to 108 do

begin
read(id[j]);

76

if(lines mod 16) =0 then readin;
lines := lines+l;
end;
readin;

{assign values read from disc}

if id[4] 0 then delay :=1; {1 = delay 0}
if id[4] 4 then delay 2; {2 - delay 4}
if id[4] 15 then delay :=3; 13 - delay 151

if id[5] 200 then soa :=1; {1 = soa 200)
if id[5] 500 then soa :-2; {2 - soa 5001
if id[51 - 1000 then soa :=3; 03 = soa 10001

posneg id[102]; {l-pos, 2-neg}
memsiz :=id[6] div 2; {l-memsiz2, 2-memsiz4}
cmvm :=idf(lI; {1=cm, 2invm}
rt := id[101]; {reaction timel
corr := id[104]; {correctness: 1-hit, 2-cr, 3-fa, 4inmiss}
subject :idlil]; {subject numberl
session :=id[2]; {session nuniberl

case(corr) of
1,2:

begin
ave[cmvm,posneg,memsiz,soa,delay,1I :

ave[cmvm,posneg,memsiz,soa,delay,lI+rt;
ave[cmvm,posneg ,memstz,soa,delay,2] :-
ave[cmvm,posneg,memsiz,soa,delay,2]+1.0;
end;

end;

for i := 3 to id[4] do
begin
rt :- id[(i*5)+61;
case(id[(i*S)+9]) of
1,2: begin

rmem~cmvm,memsiz,delay,11
rmem[cmvm,memsiz,delay1l]+1.0;

rmemjcmvm,memsiz,delay,4] :-
rmem[cmvm,memsiz,delay,4]+rt;
end;

3,4: rmem~cmvm,memsiz,delay,21:
rmem[cmvm,memsiz,delay,2]+1 .0;

0 :rmemtcmvm,memsiz,delay,31 :-
rmem[cmvmmemsiz,delay,31+1.0;

end;

77

end;

end;

{calculate averages and write to output file)

writeln('Subject ',subject);
writeln(Session ',session);

for cmvm 1 to 2 do
beg in
if cmvm = 1 then writeln('Consistent Mapping');
if cmvm = 2 then writeln('Varied Mapping-);
for posneg 1 to 2 do

begin
if posneg =I then writeln('Positive trials');
if posneg =2 then writeln('Negaitve trials');
writein;
writeln('Delay 0 4 15)
for memsiz :=1 to 2 do
for soa := 1 to 3 do
begin
if memsiz = 1 then write(-M = 2: SQA = ',soa: 1);
if memsiz = 2 then write(&M = 4: SQA = ',saa:);
for delay :=1 to 3 do

begin
if ave[cmvm,posneg,memsiz,soa,delay,2] > 0 then
ave[cmvm,posneg,memsiz,soa,delay, 11
ave[cmvm,posneg,merisiz,soa,delay,1I/
avellcmvm,posneg ,rneisiz ,soa,delay,2];
write(ave[cmvmn,posneg,memsiz,soa,delay,1:5:0);
write(ave[cmvm,posneg,memsiz,soa,delay,2] :4:0);
end;
write] n;

end;
writein;

end;
wri tein;
writeln('Running memory performance-);
writein;
write('Memsiz Delay lfcorr #/err #nrsp RT');
writein;
for memsiz :-I to 2 do
for delay :=2 to 3 do

beg in
if rmem[cmvm,memsiz,delay,LI > 0 '-hen

rmem[cmvm,memsiz ,delay,41
rmem[cmvm ,memsiz ,delay ,4]I/
rmem[cmvm,memsiz,delay,I];

rmem[cmvm,memsiz,delay,4] := rmem[cinvm,memsiz,delay,4];

78

write((memsiz*2) :6);
if delay = 2 then write(' 4)
if delay = 3 then write(' 5)
for point := 1 to 4 do write(rmemlcmvm,memsiz,delay,point]:6:Q);
writein;

end;
end;

end.

79

Appendix H

PMSM.FLX Source code for primary/secondary memory experiment used to

collect ERPs. The file is written using a flecs preprocessor. See appendix
I for the Fortran Source Code.

The experimental procedure is identical to the Pascal version of the

program. After compilation, to execute the program type "RU PMSM". The

program prompts the user for a stimulus input file (which should be in
identical format to appendix F). A menu will be presented with the
following options:
(R)un (T)ape (C)alib (Q)uit. "R" initiates the experiment. "Q" Quits the

program. "C" gathers 5 calibration trials. "T" enters the tape manipulation
menu. The tape menu consists of the following options: (E)xit the menu and

return to main menu, (R)ewind the tape, (L)abel the tape header, (S)kip a
specified number of EOFs, (V)erify the data written to tape, (W)rite an EOF.

Two special real-time options are provided: If the user types "P" the
program will pause until the user presses carriage return. If the user

types "Q", the run-time program will abort and return to the main menu.

The program assumes 5 channels of data are to be recorded. The channels are
1) EOC, 2) Fz, 3) Cz, 4) Pz, and 5) stimulus marker. Each trial block is

written to tape with 108 identification parameters and 5 multiplexed data

channels.

80

C
C PMSM.FLX
C
C MODIFICATION DATE: JAN 16, 1988
C
C PROGRAM TO CONTROL PRIMARY/SECONDARY MEMORY STUDY
C
C IDS OUTPUT BY THE PROGRAM:
C
C ID(1) - SUBJECT NUMBER
C ID(2) - SESSION
C ID(3) - BLOCK

C ID(4) - DELAY
C ID(5) - SOA OF RETRIEVAL CUE
C ID(6) - SIZE OF MEMORY SET
C ID(7) -.CONSTANT (I) OR VARIED (2) MAPPING
C ID(8) - CODE FOR YES BUTTON
C ID(9) - CODE FOR NO BUTTON

C
C RUNNING MEMORY IDS
C
C TRIAL 1
C
C ID(10) - RUNNING MEMORY STIMULUS
C ID(11) - RT (FOR RUNNING MEMORY TRIAL)
C ID(12) - STIM TYPE FOR RUNNING MEMORY (I-TARGET, 2=NONTARGET)
C ID(13) - RESPONSE FOR RUNNING MEMORY (0-NONE, 1-TARGET, 2-NONTARGET)
C ID(14) - CORRECTNESS FOR RUNNING MEMORY: 0=NO RESPONSE, 1=HIT,
C 2=CORRECT REJECTION, 3=FALSE ALARM, 4=MISS
C
C TRIAL 2
C
C ID(15) - RUNNING MEMORY STIMULUS
C ID(16) - RT (FOR RUNNING MEMORY TRIAL)
C ID(17) - STIM TYPE FOR RUNNING MEMORY (1-TARGET, 2-NONTARGET)
C ID(18) - RESPONSE FOR RUNNING MEMORY (0=NONE, 1=TARGET, 2-NONTARGET)
C ID(19) - CORRECTNESS FOR RUNNING MEMORY: O-NO RESPONSE, I-HIT,
C 2=CORRECT REJECTION, 3=FALSE ALARM, 4-MISS
C
C TRIAL 3
C
C ID(20) - RUNNING MEMORY STIMULUS
C ID(21) - RT (FOR RUNNING MEMORY TRIAL)
C ID(22) - STIM TYPE FOR RUNNING MEMORY (1-TARGET, 2-NONTARGET)
C ID(23) - RESPONSE FOR RUNNING MEMORY (0-NONE, 1-TARGET, 2-NONTARGET)
C ID(24) - CORRECTNESS FOR RUNNING MEMORY: O-NO RESPONSE, I-HIT,
C 2-CORRECT REJECTION, 3-FALSE ALARM, 4-MISS
C
C TRIAL 4
C
C ID(25) - RUNNING MEMORY STIMULUS

81

C ID(26) - RT (FOR RUNNING MEMORY TRIAL)

C 1D(27) - STIM TYPE FOR RUNNING MEMORY (1=TARGET, 2=NONTARGET)

C ID(28) - RESPONSE FOR RUNNING MEMORY (O=NONE, 1=TARGET, 2=NONTARGET)

C ID(29) - CORRECTNESS FOR RUNNING MEMORY: O=NO RESPONSE, I=HIT,

C 2=CORRECT REJECTION, 3=FALSE ALARM, 4=MISS

C
C TRIAL 5

C
C ID(30) - RUNNING MEMORY STIMULUS

C ID(31) - RT (FOR RUNNING MEMORY TRIAL)

C ID(32) - STIM TYPE FOR RUNNING MEMORY (1=TARGET, 2=NONTARGET)

C ID(33) - RESPONSE FOR RUNNING MEMORY (O=NONE, 1=TARGET, 2=NONTARGET)
C ID(34) - CORRECTNESS FOR RUNNING MEMORY: O=NO RESPONSE, 1=HIT,

C 2=CORRECT REJECTION, 3=FALSE ALARM, 4=MISS

C
C TRIAL 6

C
C ID(35) - RUNNING MEMORY STIMULUS

C ID(36) - RT (FOR RUNNING MEMORY TRIAL)

C ID(37) - STIM TYPE FOR RUNNING MEMORY (I=TARGET, 2=NONTARGET)

C ID(38) - RESPONSE FOR RUNNING MEMORY (O=NONE, 1=TARGET, 2=NONTARGET)
C ID(39) - CORRECTNESS FOR RUNNING MEMORY: 0-NO RESPONSE, I=HIT,
c 2=CORRECT REJECTION, 3=FALSE ALARM, 4=MISS

C

C TRIAL 7

C

C ID(40) - RUNNING MEMORY STIMULUS
C ID(41) - RT (FOR RUNNING MEMORY TRIAL)

C ID(42) - STIM TYPE FOR RUNNING MEMORY (1=TARGET, 2-NONTARGET)

C ID(43) - RESPONSE FOR RUNNING MEMORY (0=NONE, 1=TARGET, 2=NONTARGET)

C ID(44) - CORRECTNESS FOR RUNNING MEMORY: O=NO RESPONSE, I=HIT,
C 2=CORRECT REJECTION, 3=FALSE ALARM, 4=MISS

C

C TRIAL 8
C

C ID(45) - RUNNING MEMORY STIMULUS

C ID(46) - RT (FOR RUNNING MEMORY TRIAL)
C ID(47) - STIM TYPE FOR RUNNING MEMORY (1-TARGET, 2=NONTARGET)

C ID(48) - RESPONSE FOR RUNNING MEMORY (O=NONE, I-TARGET, 2-NONTARGET)

C ID(49) - CORRECTNESS FOR RUNNING MEMORY: O-NO RESPONSE, I-HIT,

C 2=CORRECT REJECTION, 3=FALSE ALARM, 4-MISS
C

C TRIAL 9

C
C ID(50) - RUNNING MEMORY STIMULUS

C ID(51) - RT (FOR RUNNING MEMORY TRIAL)
c ID(52) - STIM TYPE FOR RUNNING MEMORY (I-TARGET, 2-NONTARGET)

C ID(53) - RESPONSE FOR RUNNING MEMORY (0-NONE, 1-TARGET, 2=NONTARGET)
C ID(54) - CORRECTNESS FOR RUNNING MEMORY: 0-NO RESPONSE, I-HIT,

C 2=CORRECT REJECTION, 3=FALSE ALARM, 4-MISS

C

82

C TRIAL 10

C
C ID(55) - RUNNING MEMORY STIMULUS

C ID(56) - RT (FOR RUNNING MEMORY TRIAL)

C ID(57) - STIM TYPE FOR RUNNING MEMORY (1=TARGET, 2=NONTARGET)

C ID(58) - RESPONSE FOR RUNNING MEMORY (O=NONE, I-TARGET, 2-NONTARGET)
C ID(59) - CORRECTNESS FOR RUNNING MEMORY: O=NO RESPONSE, I-HIT,

C 2=CORRECT REJECTION, 3=FALSE ALARM, 4=MISS

C
C TRIAL 11
C
C ID(60) - RUNNING MEMORY STIMULUS
C ID(61) - RT (FOR RUNNING MEMORY TRIAL)

C ID(62) - STIM TYPE FOR RUNNING MEMORY (I=TARGET, 2-NONTARGET)
C ID(63) - RESPONSE FOR RUNNING MEMORY (O=NONE, 1=TARGET, 2=NONTARGET)

C ID(64) - CORRECTNESS FOR RUNNING MEMORY: O=NO RESPONSE, 1-HIT,

C 2=CORRECT REJECTION, 3=FALSE ALARM, 4=MISS

C
C TRIAL 12

C
C ID(65) - RUNNING MEMORY STIMULUS

C ID(66) - RT (FOR RUNNING MEMORY TRIAL)

C ID(67) - STIM TYPE FOR RUNNING MEMORY (I-TARGET, 2-NONTARGET)

C ID(68) - RESPONSE FOR RUNNING MEMORY (0=NONE, I=TARGET, 2=NONTARGET)
C ID(69) - CORRECTNESS FOR RUNNING MEMORY: 0=NO RESPONSE, I-HIT,

C 2=CORRECT REJECTION, 3-FALSE ALARM, 4=MISS

C
C TRIAL 13

C
C ID(70) - RUNNING MEMORY STIMULUS
C ID(71) - RT (FOR RUNNING MEMORY TRIAL)

C ID(72) - STIM TYPE FOR RUNNING MEMORY (1=TARGET, 2-NONTARGET)
C ID(73) - RESPONSE FOR RUNNING MEMORY (O-NONE, 1=TARGET, 2-NONTARGET)

C ID(74) - CORRECTNESS FOR RUNNING MEMORY: 0=NO RESPONSE, I-HIT,
C 2-CORRECT REJECTION, 3=FALSE ALARM, 4-MISS

C
C TRIAL 14
C

C ID(75) - RUNNING MEMORY STIMULUS

C ID(76) - RT (FOR RUNNING MEMORY TRIAL)
C ID(77) - STIM TYPE FOR RUNNING MEMORY (1-TARGET, 2-NONTARGET)

C ID(78) - RESPONSE FOR RUNNING MEMORY (0=NONE, I-TARGET, 2-NONTARGET)
C ID(79) - CORRECTNESS FOR RUNNING MEMORY: O-NO RESPONSE, I-HIT,

C 2-CORRECT REJECTION, 3-FALSE ALARM, 4-MISS

C
C TRIAL 15

C
C ID(80) - RUNNING MEMORY STIMULUS

C ID(81) - RT (FOR RUNNING MEMORY TRIAL)
C ID(82) - STIM TYPE FOR RUNNING MEMORY (1-TARGET, 2-NONTARGET)

C ID(83) - RESPONSE FOR RUNNING MEMORY (0-NONE, I-TARGET, 2-NONTARGET)

83

C ID(84) - CORRECTNESS FOR RUNNING MEMORY: 0-NO RESPONSE, 1-HIT,

C 2=CORRECT REJECTION, 3=FALSE ALARM, 4-MISS
C
C STERNBERG IDS
C
C ID(85) - MEMORY SET WORD #1, LETTER #1

C ID(86) - MEMORY SET WORD #1, LETTER #2

C ID(87) - MEMORY SET WORD #I, LETTER #3

C ID(88) - MEMORY SET WORD #1, LETTER 1/4
C
C ID(89) - MEMORY SET WORD #2, LETTER #1

C ID(90) - MEMORY SET WORD #2, LETTER #2
C ID(91) - MEMORY SET WORD #2, LETTER #3

C ID(92) - MEMORY SET WORD #2, LETTER #4

C
C ID(93) - MEMORY SET WORD #3, LETTER #1

C ID(94) - MEMORY SET WORD #3, LETTER #2

C ID(95) - MEMORY SET WORD #3, LETTER #3

C ID(96) - MEMORY SET WORD #3, LETTER #4

C
C ID(97) - MEMORY SET WORD #4, LETTER #1
C ID(98) - MEMORY SET WORD #4, LETTER #2

C ID(99) - MEMORY SET WORD #4, LETTER #3

C ID(100) - MEMORY SET WORD #4, LETTER #4
C
C ID(101) - RT (FOR STERNBERG TRIAL)
C ID(102) - STIM TYPE (1=TARGET, 2-NONTARGET)
C ID(103) - RESPONSE (0w-NONE, 1-TARGET, 2-NONTARGET)

C ID(104) - CORRECTNESS: 0=NO RESPONSE, 1-HIT, 2-CORRECT REJECTION,
C 3-FALSE ALARM, 4-MISS
C
C ID(105) - STIMULUS PRESENTED, LETTER #1

C ID(106) - STIMULUS PRESENTED, LETTER #2

C ID(107) - STIMULUS PRESENTED, LETTER #3

C ID(108) - STIMULUS PRESENTED, LETTER #4
C
C -- -

C

IMPLICIT INTEGER (A-z)
INTEGER COND(96,7),LSTIM(3),ISEED(2)
BYTE NAME(17),ERR,TEMP1,WORD(5),NUM(9),DIGIT(2),YES,NO,

+CMTARG(5,4),CMDIST(5,4),VMSTIM(1O,4),TARG(5,4),DIST(5,4)
REAL SEED,RAN
EQUIVALENCE (SEED,ISEED),(ISEED(1),S1),(ISEED(2),S2)
COMMON /RAN/ S1,S2
COMMON /DATA/ ID(108),DATA(5,210)

C
DATA STMDUR,NBACK/200 ,2/
DATA NCHAN,NPTS,DRATE,NIDS,BASE/5,210,1O,108,100/
DATA NUM/1',2(,3',4(,5,6 ,7',8(,9'/

84

C
C GET A RANDOM SEED AND WARM UP RANDOM NUMBER GENERATOR
C

SEED=SECNDS(0)

DO (RANDOM=1,2000)

CALL RAN(SI,S2)
FIN

C

C INITIALIZE MATROX
C

CALL MCINIT(1)

C
C SET UP DISPLAY ASSIGNMENTS

C

CALL GQINIT
CALL GQTTL(' PM/SM EXPERIMENT')
CALL GQLABL(1,-FZ ELECTRODE')

CALL GQLABL(2,-CZ ELECTRODE')

CALL GQLABL(3,-PZ ELECTRODE-)
CALL GQLABL(4,-EOG ELECTRODE-)

CALL GQLABL(5,-STM MARKER-)

C
C ASSIGN STIMULUS FILE FROM DISC

C

TYPE *,-INPUT STIMULUS FILE FOR THIS SUBJECT-

CALL GETSTR(5 ,NAME,16 ,ERR)
CALL ASSIGN(40,NAME,OOLD-)

C
C READ STIMULUS FILE
C

DO (1=1,5)

READ(40,1) (CMTARG(I,J),J=1,4)

FIN

C
DO (1=1,5)

READ(40,1) (CMDIST(I,J),J-1,4)

FIN

C
DO (I=1,10)

READ(40,1) (VMSTIM(I,J),J-1,4)

FIN

C
READ(40,2) YES,NO
IF(YES.EQ.'/')

YESBUT-I
NOBUT-O
FIN

IF(YES.EQ.Z')

YESBUT-0

NOBUT-1

FIN

85

C
DO (J=1,96)
READ(40,3) (COND(J,I),I=1,7)

FIN

C
1 FORMAT(4AI)
2 FORMAT(2AI)

3 FORMAT(715)

C
C = -GET THE OPTION FROM THE USER

C
C GET THE OPTION

C
100 CONTINUE

TYPE 110
110 FORMAT(//-$ MENU: (R)UN, (T)APE, (C)ALIB, (Q)UIT-Y)

ACCEPT 120,IOPT

120 FORMAT(A1)

C
C JUMP ON OPTION

C
IF(IOPT.EQ.-C-) CALL CALIB(NCHAN,NPTS,DRATE,NIDS)

IF(IOPT.EQ.'Q-) GOTO 2000
IF(IOPT.EQ.-R') GOTO 500

IF(IOPT.EQ.-T-) CALL TAPE(NCHAN,NPTS,NIDS)

GOTO 100
C
C- RUN TIME SETUP

C
C TRAP "Q" FOR ABORT.
C
500 ISWFLG=O

CALL SCCA(ISWFLG)
CALL KEYON !TURN OFF ECHO, CHECK FOR KEY PRESSES

C
C INITIALIZE NBYTES FOR TAPE WRITE
C

NBYTES=(NIDS+NCHAN*NPTS)*2

C
C INITIALIZE DEVICES

C
CALL LINOFF

CALL CLINIT
CALL DIINIT

CALL DOINIT
DO (ICLOCK=2,5)

CLOCK-ICLOCK
CALL PCINIT(CLOCK)
FIN

C
C .-.....-- =. 4AIN RUN TIME LOOP=-

86

C
DO (BLOCK=1,96)

C
C ZERO ID ARRAY
C

CALL ZERO(ID,NIDS*2)
C
C CHECK FOR "Q" AND "P"
C

CALL KEYS(KEYFLG) !CHECK FOR KEY PRESSES
IF(KEYFLG.EQ. 1)
CALL CLKILL
CALL MCERAS
CALL DIKILL
CALL DOKILL
CALL ADKILL
CALL KEYOFF
DO (ICLOCK=2,5)
CLOCK=ICLOCK
CALL PCKILL(CLOCK)
FIN
CALL EOF(O)
CALL EOF(O)
CALL SKIP(O,-2)
GOTO 100
FIN

C
IBLK-BLOCK
IF(((IBLK/16)*16).EQ.IBLK.AND.IBLK.NE.96)
TYPE *,' Program paused'
CALL MCTEXT(20,200,'Pause - Press button to continue)
CALL MCDISP(1)

C
C WAIT FOR SUBJECT TO PRESS BUTTON
C

CALL DISET(O,(SINGLE-,ISTATO)
CALL DISET(1 (SINGLE-,ISTAT1)
CALL WAIT(ISTATO ,ISTATL)
CALL MCDISP(O)
CALL MCERAS
FIN

C
C READ CONDITION, STORE IDS AND SELECT STIKULI
C

SUB =COND(BLOCK, 1)
SESS =COND(BLOCK,2)
SOA =COND(BLOCK, 3)
DELAY1 -COND(BLOCK, 4)
CMVM =COND(BLOCK, 5)
MEMSIZ-COND(BLOCK ,6)
STYPE -COND(BLOCK,7)

87

C
ID(1)= SUB
ID~(2)= SESS
ID(3)= BLOCK
ID(4)= DELAY
ID(5)= SOA
ID(6)= MEMSIZ
LD(7)= CMVM
ID(8)= YESBUT
ID(9)= NOBUT

C INFORM EXPERIMENTER OF CO-NDITIoN

TYPE 30,BLOGK,DELAY,CM -VM,MEMSIZ,STYPE
C) FORMAT($' Block ',13,- Delay ',i2, CMVM ',Il,- Memsiz -,I!,

+PosNeg ',II)

DO (K=1,10)
C
C1 PERMUTE CM TARGETS
C

DO (LOOP =1,5)
J=ITWIXT(1,5)
DO (I=1,4)
TEMPI = GMTARG(J,I)
CMTARG(J,I) = CMTARG(LOOP,I)
CMTARG(LOOP,I) = TEMPI
FIN
FIN

C
C PERMUTE CM DISTRACTORS
C

DO (LOOP =1,5)
J= ITWIXT(1,5)
DO (1=1;4)
TEMPI = CMDIST(J,I)
CMDIST(J,I) = CMDIST(LOOP,I)
CMDIST(LOOP,I) = TEMP1
FIN
FIN

C
C PERMUTE VM STIMULI
C

DO (LOOP =1,10)
J=ITWIXT(1,10)
DO (1-1,4)
TEMPI = VMSTIM(J,I)
VMSTIM(J,I) = VMSTIM(LOOP,r)
VMSTIM(LOOP,I) - TEMPI
FIN
FIN

88

FIN
C
C CHOOSE CM STIMULI
C

IF(CMVM. EQ.].)
DO (J=1,M'EMSIZ)
DO (I=1,4)
TARG(J,I)=CMTARG(J,I)
FIN
FIN

C
DO(J=1,5)
DO(I=1 ,4)
DIST(J,I)=CMDIST(J,I)
F IN
FIN

C
F IN

C
C CHOOSE VM STIMULI
C

IF(CMVM.EQ. 2)
DO (J=1,MEMSIZ)
DO (1=1,4)
TARG(J ,I)=VMSTIM(J,I)
FIN
FIN

C
DO(J=MEMSIZ+1 ,MEMSIZ+5)
DO(I1,4)
DIST(J-MEMSIZ, I)=VMSTIM(J,I)
FIN
FIN

C
FIN

C
C === ===== =P RE SE NT MEMORY SET==== =

C
C
C WRITE STIMULI TO MATROX AND STORE IDS

C
DO(1=1,MEMSIZ)

C
IF(MEMSIZ.EQ.2)
XPOS'60+(1* 35)
YPOS-100
FIN

C
IF(MEMSIZ.EQ.4)
XPOS-27+(1*35)

89

YPOS= 100
FIN

C
DO (J=1,4)
WORD(J)=TARG(I ,J)
FIN

C
DO(J=1 ,4)
ID(80+(4*I)+J)=TARG(I,J)
F IN
WORD(5)=O
GALL MCTEXT(XPOS,YPOS,WORD)
FIN

C
C TURN ON STIMULUS
C

CALL MCSYNC !SUNCH DISPLAY
CALL MCDISP(1) !TURN ON STIMULUS
CALL PCSET(I+1,(SINGLE-,3,3000,IFLAG1)

CALL WAIT(IFLAG1) !WAIT FOR 3 SECONDS
CALL MCDISP(O) !TURN OFF STIMULUS
CALL MCERAS !ERASE MATROX

C
C WAIT FOR 1500 MSEC BEFORE PRESENTING PROBES
C

CALL PCSET(1+1,(SINGLE-,3,500,IFLAG1)
CALL WAIT(IFLAG1)

C
C----------RUNNING MEMORY TRIALS=
C

IF(DELAY.NE.O)
DO (ITRL= , IABS(DELAY))

C
C PREPARE STIMULI DURING PRE-STIMULUS INTERVAL
C

CALL PCSET(1+1,(SINGLE,3,5,IFLAGI)
POSNEG=ITWIXT(1,3)
IF(POSNEG.EQ.3) POSNEG=2

C
C IF A POSITIVE TRIAL, REPEAT STIMULUS NBACK
C IF A NEGATIVE TRIAL, SELECT A NEW STIMULUS
C

IF(POSNEG.EQ.1) !POSITIVE TRIAL
IF(ITRL.LE.NBACK) JSTIM=ITWIXT(1 39)

IF(ITRL.GT.NBACK) JSTIM=LSTIM(NBACK)
FIN

C
IF(POSNEG.EQ.2) !NEGATIVE TRIAL

10 JSTIM=ITWIXT(1,9)
IF(JSTIM.EQ.LSTIM(NBACK)) GOTO 10
FIN

90

C
C STORE SUCCESSIVE STIMULI
C

LSTIM(3) = LSTIM(2)
LSTIM(2) = LSTIM(1)
LSTIM(1) = JSTIM
ID((ITRL*5)+5) = JSTIM

C
XPOS= 120
YPOS= 120
DIGIT(1)=NUM(JSTIM)
DIGIT(2)=O
IF (DELAY.GT.O) CALL MCTEXT(XPOS,YPOS,DIGIT)

C
CALL WAIT(IFLAG1) !WAIT OUT PRESTIMULUS INTERVAL

C
CALL MCSYNC ISYNCH DISPLAY
CALL MCDISP(1) ITURN ON STIMULUS
CALL PCSET(1+1,(SINGLE-,3,1000,IFLAG1)
CALL DIRESP(RESP,-SINGLE-,2,1+1 ,RT,RSTAT)
CALL PCSET(1+2,(SINGLE ,3 ,200 ,IFLAG2)
CALL WAIT(IFLAG2)
CALL MCDISP(O) ITURN OFF STIM1ULUS
CALL MCERAS IERASE MATROX
CALL WAIT(IFLAGI) !WAIT FOR END OF 1000 MSEC INTERVAL

C
C CLASSIFY TRIAL AND STORE RT AND STIM TYPE (1-HIT, 2-CR, 3=FA, 4-MISS)
C

ID((ITRL*5)+6) = RT
ID((ITRL*5)+7) = POSNEG
ID((ITRL*5)+8) = 0
ID((ITRL*5)+9) = 0

C
IF(RSTAT.NE.O)

C
IF(RESP.EQ.YESBUT)
ID((ITRL*5)+8) - I
IF (ID((ITRL*5)+7).EQ.1) ID((ITRL*5)+9) = 1
IF (ID((ITRL*5)+7).EQ.2) ID((ITRL*5)+9) - 3
FIN

C
IF(RESP.EQ.NOBUT)
ID((ITRL*5)+8) - 2
IF (ID((ITRL*5)+7).EQ.2) ID((ITRL*5)+9) = 2
IF (ID((ITRL*5)+7).EQ.1) ID((ITRL*5)+9) - 4
FIN

C
FIN

C
FIN
FIN

91

C
C STERNBERG PROBE TRIAL mnn mm

C
C
C START THE DIGITIZER
C

CALL ADSET(DATA,2,1,NCHAN,NPTS,3,DRATE,DSTAT)
C
C WAIT OUT BASELINE CLOCK
C

CALL PCSET(1+1,(SINGLE-,3,BASE,IFLAGI)
CALL WAIT(IFLAG1)

C
C DELIVER RETRIEVAL CUE
C

IF(SOA.GE. 200)
XPOS= 120
YPOS= 120
CALL MCCHAR(XPOS ,YPOS ,-)
CALL MCSYNC ! SYNCH DISPLAY
CALL DOSET(O) !TURN ON STIMULUS MARKER
CALL MCDISP(1) ! TURN ON MATROX
CALL PCSET(1+1,'SINGLE-,3,SOA,IFLAG1)
CALL PCSET(1+2,(SINGLE-,3 ,200,IFLAG2)
CALL WAIT(IFLAG2)
CALL MCDISP(O) !TURN OFF MATROX
CALL DOCLR(O) ITURN OFF STIMULUS MARKER
CALL MCERAS IERASE MATROX
CALL WAIT(IFLAG1) !WAIT FOR END OF SOA INTERVAL
FIN

C
C PREPARE STIMULI DURING PRE-STIM4ULUS INTERVAL
C

CALL PCSET(141,SINGLE-,3,5,IFLAGI)
XPOS=1 12
YPQS=140

C
IF(STYPE.EQ.1) !POSITIVE TRIAL
I=ITWIXT(1,MEMSIZ)
DO(J-1 ,4)
WORD(J)=TARG(I ,J)
ID(104+J)=TARG(I,J)
FIN
FIN

C
IF (STYPE.EQ.2) !NEGATIVE TRIAL
I-ITWIXT(1,5)
DO(J-1 ,4)
WORD(J)-DIST(I ,J)
ID(104+j)-DIST(I,J)
FIN

92

FIN
WORD(5)=O
CALL MCTEXT(XPOS ,YPOS ,WORD)
CALL WAIT(IFLAG1)

C
CALL MCSYNC ISYNCH DISPLAY
CALL DOSET(O) I TURN ON STIMULUS MARKER
CALL MCDISP(1) ! TURN ON DISPLAY
CALL PCSET(1+1,-SINGLE,3,3000,IFLAG1)
CALL DIRESP(RESP,-SINGLE-,2,1+1 ,RT,RSTAT)
CALL PCSET(1+2,'SINGLE' ,3,200,IFLAG2)
CALL WAIT(IFLAG2)
CALL MCDISP(O) ! TURN OFF DISPLAY
CALL DOCLR(O) ! TURN OFF STIMULUS MARKER
CALL MCERAS ! CLEAR MARTOX
CALL WAIT(IFLAG1) ! WAIT FOR END OF 3 SECOND INTERVAL

C
C CLASSIFY TRIAL AND STORE RT AND STIM TYPE (1-HIT, 2-CR, 3-FA, 4-MISS)
C

ID(1O1) - RT
ID(102) = STYPE
ID(103) = 0
113(104) - 0

C
IF(RSTAT.NE.O)
IF(RESP.EQ.YESBUT)
113(103) - 1
IF (ID(102).EQ.1) 113(104) - 1
IF (ID(102).EQ.2) 113(104) - 3
FIN

C
IF(RESP.EQ.NOBUT)
113(103) - 2
IF (ID(102).EQ.2) ID(104) - 2
IF (ID(102).EQ.1) ID(104) - 4
FIN

C
FIN

C
C CHECK IF ANY POINTS ARE OUT OF BOUNDS
C

ERROR-O
DO (IPTS-1,210)
DO (ICHAN-1,4)
IF(IABS(DATAC ICHAN, IPTS)) .GE. 2047) ERROR-ERROR+1
FIN
FIN

C
C WRITE DATA TO TAPE
C

CALL PUT(O ,ID,NBYTES ,MSTAT)

93

TYPE 20, ID(101),ID(104)
20 FORMAT(' RT ,14, Corr ,I1)

IF (ERROR.NE.0) TYPE *,'Error in last trial of digitized EEG'

CALL DISP(NCHAN,NPTS)
CALL WAIT(MSTAT)

C
FIN

C
C KILL THE DEVICES
C

CALL CLKILL
CALL MCERAS
CALL DIKILL
CALL DOKILL
CALL ADKILL
CALL KEYOFF
DO (ICLOCK=2,5)
CLOCK=ICLOCK
CALL PCKILL(CLOCK)
FIN

C
C WRITE DOUBLE EOF AND SKIP BACK 1
C

CALL EOF(O)
CALL EOF(O)
CALL SKIP(O,-2)

C
C RETURN TO MAIN MENU
C

GOTO 100
C
C . . . QUIT SECTION

C
C TURN OFF THE DISPLAY AND EXIT PROGRAM
C
2000 CONTINUE

CALL CLKILL
CALL MCERAS
CALL GQINIT
CALL DIKILL
CALL ADKILL
CALL KEYOFF
STOP
END

94

C *
C SUBROUTINES *
C *

******************* ***** ** * **************************** *

CCC
CCC SUBROUITNE CALIB
CCC
C
C GATHERS FIVE CALIBRATION TRIALS
c

SUBROUTINE CALIB(NCHANNPTSDRATE,NIDS)
IMPLICIT INTEGER (A-Z)

C
COMMON /DATA/ ID(108),DATA(5,210)
NBYTES-(NIDS+NCHAN*NPTS)*2

C
CALL LINOFF
CALL CLINIT
WRITE(7,10)

10 FORMAT(/////' TURN ON CALIBRATION PULSE')
PAUSE 'HIT <CR> TO CONTINUE'

C DIGITIZE 5 TRIALS OF CALIBRATION DATA
DO (LOOP=1,5)
CALL ADSET(DATA,2,1,NCHAN,NPTS,3,DRATE,DSTAT)
CALL WAIT(DSTAT) !WAIT FOR END OF DIGITIZING
CALL PUT(0,ID,NBYTES,MSTAT)
CALL WAIT(MSTAT) !WAIT FOR END OF WRITTING TO TAPE

C
C DISPLAY DATA ON GT
C

CALL DISP(NCHAN,NPTS)
C

FIN
CALL EOF(O)
CALL EOF(O)
CALL SKIP(O,-2)
RETURN
END

C 9

95

ccc
("ClC DI SP
ccc

SUBROUTINE DISP(NCHAN,NPTS)
COMMON /DATA/ ID(108),DATA(5,210)

C SUBROUTINE TO DISPLAY WAVEFORM TO GT DISPLAY
C
C DISPLAY DATA ON GT44
c

CALL DEBASE(DATA,NCHAN,NPTS,2,I ,NPTS,XBAR)
GALL GQDISP(1 ,2,DATA,NGHAN,NPTS,-2)
CALL DEBASE(DATA,NCHAN,NPTS,3,1 ,NPTS,XBAR)
GALL GQDISP(2,3,DATA,NCHAN,NPTS,-2)
CALL DEBASE(DATA,NCHAN,NPTS,4,1 ,NPTS,XBAR)
GALL GQDISP(3,4,DATA,NCHAN,NPTS,-2)
GALL DEBASE(DATA,NCHAN,NPTS,1 ,1,NPTS,XBAR)
CALL GQDISP(4,1 ,DATA,NCHAN,NPTS,-2)
CALL DEBASE(DATA,NCHANNPTS,5 ,1~,NPTS,XBAR-)
CALL GQDISP(5,5,DATA,NCHAN,NPTS,-2)
RETURN
END

C=

96

CCC
CCC ITWIXT
CCC
C
C RETURNS AN INTEGER IN THE RANGE GIVEN, RANDOMLY CHOSEN.

C
INTEGER FUNCTION ITWIXT(MIN,MAX)

IMPLICIT INTEGER (A-Z)

REAL PAN

COMMON /RAN/ SI,S2
100 ITWIXT=RAN(SI,S2)*(MAX-MIN+1)+MIN

IF(ITWIXT.LT.MIN.OR.ITWIXT.GT.MAX) GOTO 100

RETURN

END

C

97

CCC
CCC SUBROUTINE KEYS

CCC

C
C CHECK FOR STOP OR QUIT COMMANDS (KEY SUBROUTINE)

C
SUBROUTINE KEYS(KEYFLG)

C
INTEGER KEYFLG

BYTE KEY
KEYFLG=O

KEY=KEYCHK(IDUM)

IF(KEY.NE.'P') GOTO 10

CALL KEYOFF

PAUSE I-- HIT <CR> TO CONTINUE
CALL KEYON

10 IF(KEY.NE.-Q-) GOTO 20

CALL KEYOFF
WRITE(7,*) -BLOCK ABORTED: BACK TO MENU (2 EOFS WRITTEN)-

KEYFLG=I

20 RETURN

END

98

CCC
CCC TAPE
CCC
C
C SUBROUTINE TO MANIPULATE TAPE.
C

SUBROUTINE TAPE(NCHAN,NPTS ,NIDS)
IMPLICIT INTEGER (A-Z)
BYTE IOPT1

COMMON /DATA/ ID(108),DATA(5,210)

C
C FIND NBYTES FOR TAPE READ, SKIP A LINE
C

NBYTES=(NIDS+NCHAN*NPTS)*2
TYPE 2-

C
C GET THE OPTION FROM THE USER
C
5 WRITE(7,10)
10 FORMAT(&$TAPE: (E)XIT, (R)EWIND,

+ - (L)ABEL, (S)KIP, (V)ERIFY, (W)EOF>)
READ(5,15) IOPTI

15 FORMAT(A1)
C
C JUMP ACCORDING TO OPTION
C

IF(IOPTi .EQ.-E-) RETURN
IF(IOPT1.EQ.R) CALL SKIP(O,O)
IF(IOPT1.EQ.-W-) CALL EOF(O)
IF(IOPT1.EQ.S) GOTO 50
IF(IOPT1.EQ.-V-) GOTO 100
IF(IOPT1.EQ.-L-) GOTO 300
GOTO 5

C
C SKIP EOF OPTION
C
50 WRITE(7,55)
55 FORMAT(-$NUMBER OF EOFS TO SKIP Y)

READ(5,*) IFILES
CALL SKIP(O,IFILES)
GOTO 5

C
C VERIFY TAPE OPTION - READ ONLY IDS
C
100 DO 200 NT=1,9000

CALL GE(,ID,NBYTES,MSTAT)
CALL WAIT(MSTAT)
IF(MSTAT.NE.1) GOTO 210
IF(ID(l).NE."177777) GOTO 150
WRITE(7,125) (ID(L),L-2,50)

99

:i' FORMAT(' LABEL:',49A1)
GOTO 200

;0; WRITE(7,175) NT,(ID(K),K=1,1O8)

1L75 FORMAT(' RECORD: ',16,/,11(1016/))

C DISPLAY DATA ON GT

CALL DISP(NCHAN,NPTS)
C
200 CONTINUE
210o NT=NT-1

COTO 5
C
C WRITE A LABEL
C
300 CALL ZERO(ID,100)

ID(1)="17 7777
WRITE(7,311)

311 FORMAT('$LABEL (LESS THAN 50 CHARS) >
READ(5,310) (ID(L),L=2,50)

310 FORMAT(49Al)
CALL PUT(O ,ID, 100 ,MSTAT)

CALL WAIT(MSTAT)
CALL ZERO(ID,100)
COTO 5
END

1400

Appendix I

PMSM.FTX Source code for primary/secondary memory experiment used to

collect ERPS. This is the FORTRAN source code (the output of the flecs

preprocessor) and must be compiled using the FORTRAN compiler.

101

C
C PMSM.FTX
C
C MODIFICATION DATE: JAN 16, 1988
C
C PROGRAM TO CONTROL PRIMARY/SECONDARY MEMORY STUDY
C
C IDS OUTPUT BY THE PROGRAM:
C
C ID(1) - SUBJECT NUMBER

C ID(2) - SESSION

C ID(3) - BLOCK

C ID(4) - DELAY

C ID(5) - SOA OF RETRIEVAL CUE
C ID(6) - SIZE OF MEMORY SET

C ID(7) - CONSTANT (1) OR VARIED (2) MAPPING
C ID(8) - CODE FOR YES BUTTON
C ID(9) - CODE FOR NO BUTTON

C
C RUNNING MEMORY IDS
C
C TRIAL 1
C
C ID(IO) - RUNNING MEMORY STIMULUS
C ID(11) - RT (FOR RUNNING MEMORY TRIAL)
C ID(12) - STIM TYPE FOR RUNNING MEMORY (I-TARGET, 2-NONTARGET)
C ID(13) - RESPONSE FOR RUNNING MEMORY (0-NONE, 1-TARGET, 2-NONTARGET)
C ID(14) - CORRECTNESS FOR RUNNING MEMORY: O-NO RESPONSE, 1-HIT,

C 2-CORRECT REJECTION, 3=FALSE ALARM, 4-MISS
C
C TRIAL 2
C
C ID(15) - RUNNING MEMORY STIMULUS
C ID(16) - RT (FOR RUNNING MEMORY TRIAL)
C ID0(17) - STIM TYPE FOR RUNNING MEMORY (1-TARGET, 2-NONTARGET)
C ID(18) - RESPONSE FOR RUNNING MEMORY (O-NONE, I-TARGET, 2-NONTARGET)
C ID(19) - CORRECTNESS FOR RUNNING MEMORY: 0-NO RESPONSE, I-HIT,
C 2-CORRECT REJECTION, 3-FALSE ALARM, 4=MISS
C
C TRIAL 3
C
C ID(20) - RUNNING MEMORY STIMULUS
C ID(21) - RT (FOR RUNNING MEMORY TRIAL)
C ID(22) - STIM TYPE FOR RUNNING MEMORY (I-TARGET, 2-NONTARGET)
C ID(23) - RESPONSE FOR RUNNING MEMORY (0-NONE, I-TARGET, 2-NONTARGET)
C ID(24) - CORRECTNESS FOR RUNNING MEMORY: 0-NO RESPONSE, 1-HIT,
C 2-CORRECT REJECTION, 3-FALSE ALARM, 4-MISS
C
C TRIAL 4
C
C ID(25) - RUNNING MEMORY STIMULUS

102

C ID(26) - RT (FOR RUNNING MEMORY TRIAL)
C ID(27) - STIM TYPE FOR RUNNING MEMORY (1=TARGET, 2-NONTARGET)
C ID(28) - RESPONSE FOR RUNNING MEMORY (0-NONE, I-TARGET, 2=NONTARGET)
C ID(29) - CORRECTNESS FOR RUNNING MEMORY: O-NO RESPONSE, ILHIT,
C 2=CORRECT REJECTION, 3=FALSE ALARM, 4=MISS
C
C TRIAL 5
C
C ID(30) - RUNNING MEMORY STIMULUS
C ID(31) - RT (FOR RUNNING MEMORY TRIAL)
C ID(32) - STIM TYPE FOR RUNNING MEMORY (I-TARGET, 2=NONTARGET)
C ID(33) - RESPONSE FOR RUNNING MEMORY (O=NONE, 1=TARGET, 2-NONTARGET)
C ID(34) - CORRECTNESS FOR RUNNING MEMORY: 0=NO RESPONSE, IHIT,
C 2=CORRECT REJECTION, 3=FALSE ALARM, 4=MISS
C
C TRIAL 6
C
C ID(35) - RUNNING MEMORY STIMULUS
C ID(36) - RT (FOR RUNNING MEMORY TRIAL)
C ID(37) - STIM TYPE FOR RUNNING MEMORY (1-TARGET, 2=NONTARGET)
C ID(38) - RESPONSE FOR RUNNING MEMORY (O=NONE, 1=TARGET, 2=NONTARGET)
C ID(39) - CORRECTNESS FOR RUNNING MEMORY: O-NO RESPONSE, 1-HIT,
C 2=CORRECT REJECTION, 3-FALSE ALARM, 4=MISS
C
C TRIAL 7
C
C ID(40) - RUNNING MEMORY STIMULUS
C ID(41) - RT (FOR RUNNING MEMORY TRIAL)
C ID(42) - STIM TYPE FOR RUNNING MEMORY (I-TARGET, 2=NONTARGET)
C ID(43) - RESPONSE FOR RUNNING MEMORY (O-NONE, 1=TARGET, 2=NONTARGET)
C ID(44) - CORRECTNESS FOR RUNNING MEMORY: O-NO RESPONSE, 1-HIT,
C 2=CORRECT REJECTION, 3=FALSE ALARM, 4=MISS
C
C TRIAL 8
C
C ID(45) - RUNNING MEMORY STIMULUS
C ID(46) - RT (FOR RUNNING MEMORY TRIAL)
C ID(47) - STIM TYPE FOR RUNNING MEMORY (I-TARGET, 2-NONTARGET)
C ID(48) - RESPONSE FOR RUNNING MEMORY (0=NONE, 1-TARGET, 2-NONTARGET)
C ID(49) - CORRECTNESS FOR RUNNING MEMORY: 0-NO RESPONSE, I-HIT,
C 2-CORRECT REJECTION, 3=FALSE ALARM, 4-MISS
C
C TRIAL 9
C
C ID(50) - RUNNING MEMORY STIMULUS
C ID(51) - RT (FOR RUNNING MEMORY TRIAL)
C ID(52) - STIM TYPE FOR RUNNING MEMORY (1-TAPGET, 2-NONTARGET)
C ID(53) - RESPONSE FOR RUNNING MEMORY (O-NONE, 1=TARGET, 2=NONTARGET)
C ID(54) - CORRECTNESS FOR RUNNING MEMORY: 0-NO RESPONSE, I-HIT,
C 2-CORRECT REJECTION, 3-FALSE ALARM, 4-MISS
C

103

C TRIAL 10

C
C ID(55) - RUNNING MEMORY STIMULUS

C ID(56) - RT (FOR RUNNING MEMORY TRIAL)

C ID(57) - STIM TYPE FOR RUNNING MEMORY (1-TARGET, 2-NONTARGET)

C ID(58) - RESPONSE FOR RUNNING MEMORY (O=NONE, 1-TARGET, 2=NONTARGET)

C ID(59) - CORRECTNESS FOR RUNNING MEMORY: O=NO RESPONSE, 1=HIT,

C 2=CORRECT REJECTION, 3=FALSE ALARM, 4=MISS

C
C TRIAL 11

C

C ID(60) - RUNNING MEMORY STIMULUS

C ID(61) - RT (FOR RUNNING MEMORY TRIAL)

C ID(62) - STIM TYPF FOR RUNNING MEMORY (1=TARGET, 2=NONTARGET)

C ID(63) - RESPONSE FOR RUNNING MEMORY (O=NONE, I=TARGET, 2=NONTARGET)

C ID(64) - CORRECTNESS FOR RUNNING MEMORY: O-NO RESPONSE, 1=HIT,

C 2=CORRECT REJECTION, 3=FALSE ALARM, 4=MISS

C

C TRIAL 12
C

C ID(65) - RUNNING MEMORY STIMULUS
C ID(66) - RT (FOR RUNNING MEMORY TRIAL)

C ID(67) - STIM TYPE FOR RUNNING MEMORY (1=TARGET, 2=NONTARGET)

C ID(68) - RESPONSE FOR RUNNING MEMORY (0=NONE, 1=TARGET, 2=NONTARGET)
C ID(69) - CORRECTNESS FOR RUNNING MEMORY: 0=NO RESPONSE, 1=HIT,

C 2=CORRECT REJECTION, 3=FALSE ALARM, 4=MISS

C
C TRIAL 13

C
C ID(70) - RUNNING MEMORY STIMULUS

C ID(71) - RT (FOR RUNNING MEMORY TRIAL)

C ID(72) - STIM TYPE FOR RUNNING MEMORY (1-TARGET, 2-NONTARGET)

C ID(73) - RESPONSE FOR RUNNING MEMORY (0=NONE, 1=TARGET, 2=NONTARGET)
C ID(74) - CORRECTNESS FOR RUNNING MEMORY: O-NO RESPONSE, 1=HIT,

C 2=CORRECT REJECTION, 3=FALSE ALARM, 4=MISS
C
C TRIAL 14
C
C ID(75) - RUNNING MEMORY STIMULUS

C ID(76) - RT (FOR RUNNING MEMORY TRIAL)
C ID(77) - STIM TYPE FOR RUNNING MEMORY (1=TARGET, 2=NONTARGET)

C ID(78) - RESPONSE FOR RUNNING MEMORY (0=NONE, 1=TARGET, 2=NONTARGET)
C ID(79) - CORRECTNESS FOR RUNNING MEMORY: 0=NO RESPONSE, I-HIT,

C 2=CORRECT REJECTION, 3=FALSE ALARM, 4=MISS

C
C TRIAL 15

C
C ID(80) - RUNNING MEMORY STIMULUS
C ID(81) - RT (FOR RUNNING MEMORY TRIAL)

C ID(82) - STIM TYPE FOR RUNNING MEMORY (I-TARGET, 2-NONTARGET)

C ID(83) - RESPONSE FOR RUNNING MEMORY (0=NONE, 1-TARGET, 2-NONTARGET)

104

C ID(84) - CORRECTNESS FOR RUNNING MEMORY: O=NO RESPONSE, 1=HIT,
C 2=CORRECT REJECTION, 3=FALSE ALARM, 4=MISS
C
C STERNBERG IDS
C
C ID(85) - MEMORY SET WORD #1, LETTER #1
C ID(86) - MEMORY SET WORD #1, LETTER #2
C ID(87) - MEMORY SET WORD #1, LETTER #3
C ID(88) - MEMORY SET WORD #1, LETTER #4
C
C ID(89) - MEMORY SET WORD #2, LETTER #1
C ID(90) - MEMORY SET WORD #2, LETTER #2
C ID(91) - MEMORY SET WORD #2, LETTER #3
C ID(92) - MEMORY SET WORD #2, LETTER #4
C
C ID(93) - MEMORY SET WORD #3, LETTER #1
C ID(94) - MEMORY SET WORD #3, LETTER #2
C ID(95) - MEMORY SET WORD #3, LETTER #3
C ID(96) - MEMORY SET WORD #3, LETTER #4
C
C ID(97) - MEMORY SET WORD #4, LETTER #1
C ID(98) - MEMORY SET WORD #4, LETTER #2
C ID(99) - MEMORY SET WORD #4, LETTER #3
C ID(100) - MEMORY SET WORD #4, LETTER #4
C
C ID(101) - RT (FOR STERNBERG TRIAL)
C ID(102) - STIM TYPE (1=TARGET, 2=NONTARGET)
C ID(103) - RESPONSE (0=NONE, 1-TARGET, 2=NONTARGET)
C ID(104) - CORRECTNESS: 0=NO RESPONSE, 1-HIT, 2-CORRECT REJECTION,
C 3=FALSE ALARM, 4-MISS
C
C ID(105) - STIMULUS PRESENTED, LETTER #1
C ID(106) - STIMULUS PRESENTED, LETTER #2
C ID(107) - STIMULUS PRESENTED, LETTER #3
C ID(108) - STIMULUS PRESENTED, LETTER #4
C
C---
C
C

IMPLICIT INTEGER (A-Z)
INTEGER COND(96,7),LSTIM(3),ISEED(2)
BYTE NAME(17),ERR,TEMPI,WORD(5),NUM(9),DIGIT(2),YES,NO,

+CMTARG(5,4),CMDIST(5,4),VMSTIM(1O,4),TARG(5,4),DIST(5,4)

REAL SEED,RAN
EQUIVALENCE (SEED,ISEED),(ISEED(1),S1),(ISEED(2),S2)
COMMON /RAN/ S1,S2
COMMON /DATA/ ID(108),DATA(5,210)

C

DATA STMDUR,NBACK/200,2/
DATA NCHAN,NPTS,DRATE,NIDS,BASE/5,210,10,108,100/
DATA NUM/I-,-2-,-3",'4",'5",'6','7',','9"/

105

C
C GET A RANDOM SEED AND WARM UP RANDOM NUMBER GENERATOR

SEED=SECNDS(O)

DO 32765 RANDOM=1,2000

CALL RAN(SI,S2)
32765 CONTINUE
C
C INITIALIZE MATROX

C
32766 CALL MCINIT(1)

SET UP DISPLAY ASSIGNMENTS
C

CALL GQINIT

CALL GQTTL(" PM/SM EXPERIMENT-)

CALL GQLABL(1,-FZ ELECTRODE')
CALL GQLABL(2,'CZ ELECTRODE-)

CALL GQLABL(3,'PZ ELECTRODE')
CALL GQLABL(4,-EOG ELECTRODE-)

CALL GQLABL(5,'STM MARKER-)

C
C ASSIGN STIMULUS FILE FROM DISC

C
TYPE *,'INPUT STIMULUS FILE FOR THIS SUBJECT'
CALL GETSTR(5,NAME,16,ERR)
CALL ASSIGN(40,NAME,O,'OLD')

C
C READ STIMULUS FILE

C
DO 32763 1=1,5

READ(40,1) (CMTARG(I,J),J=1,4)

32763 CONTINUE
C
32764 DO 32761 1=1,5

READ(40,1) (CMDIST(I,J),J=1,4)

32761 CONTINUE

C
32762 DO 32759 I=1,10

READ(40,1) (VMSTIM(I,J),J=1,4)

32759 CONTINUE
C
32760 READ(40,2) YES,NO

IF(.NOT.(YES.EQ.-/')) GO TO 32758
YESBUT=I

NOBUT=O
32758 IF(.NOT.(YES.EQ.-Z-)) GO TO 32757

YESBUT=O
NOBUT=I

C

32757 DO 32755 J=1,96

106

READ(40,3) (COND(JI),I-1,7)
3275,) CONTINUE
C
32756 CONTINUE
1 FORMAT(4A1)
2 FORMAT(2A)
3 FORMAT(715)
C
C GET THE OPTION FROM THE USER
C
C GET THE OPTION
C
100 CONTINUE

TYPE 110
110 FORMAT(//'$ MENU: (R)UN, (T)APE, (C)ALIB, (Q)UIT->')

ACCEPT 120,IOPT
120 FORMAT(A1)
C
C JUMP ON OPTION
C

IF(IOPT.EQ.-C-) CALL CALIB(NCHAN,NPTS,DRATE,NIDS)
IF(IOPT.EQ.-Q-) GOTO 2000
IF(IOPT.EQ.-R") GOTO 500
IF(IOPT.EQ.'T-) CALL TAPE(NCHAN,NPTS,NIDS)
GOTO 100

C
C RUN TIME SETUP
C
C TRAP "Q" FOR ABORT.
C
500 ISWFLG-O

CALL SCCA(ISWFLG)
CALL KEYON !TURN OFF ECHO, CHECK FOR KEY PRESSES

C
C INITIALIZE NBYTES FOR TAPE WRITE
C

NBYTES=(NIDS+NCHAN*NPTS)*2

C
C INITIALIZE DEVICES
C

CALL LINOFF
CALL CLINIT
CALL DIINIT
CALL DOINIT
DO 32753 ICLOCK-2,5
CLOCK- I CLOCK
CALL PCINIT(CLOCK)

32753 CONTINUE
C
C MAIN RUN TIME LOOP=--" =....

C

107

32754 DO 32751 BLOCK-1,96
C
C ZERO ID ARRAY
C

CALL ZERO(ID,NIDS*2)
C
C CHECK FOR "Q" AND t 'P"
C

CALL KEYS(KEYFLG) !CHECK FOR KEY PRESSES
IF(.NOT.(KEYFLG.EQ.1)) GO TO 32750
CALL CLKILL
CALL MCERAS
CALL DIKILL
CALL DOKILL
CALL ADKILL
CALL KEYOFF
DO 32748 ICLOCK-2,5
CLOCK- ICLOCK
CALL PCKILL(CLOCK)

32748 CONTINUE
32749 CALL EOF(O)

CAL-L. EOF(O)
CALL SKIP(O,-2)
GOTO 100

C
32750 IBLK-BLOCK

IF(.NOT.(((IBLK/16)*16).EQ.IBLK.AND.IBLK.NE.96)) GO TO 32747
TYPE *,' Program paused'
CALL MCTEXT(20,200,'Pause - Press button to continue)
CALL MCDISP(1)

C
C WAIT FOR SUBJECT TO PRESS BUTTON
C

CALL DISET(O,-SINGLE-,ISTATO)
CALL DISET(1 ,-SINGLE-,ISTAT1)
CALL WAIT(ISTATO ,ISTAT1)
CALL MCDISP(O)
CALL MCERAS

C
C READ CONDITION, STORE IDS AND SELECT STIMULI
C
32747 SUB -COND(BLOCK,l)

SESS -COND(BLOCK,2)
SOA -COND(BLOCK, 3)
DELAY -COND(BLOCK ,4)
CHYM -COND(BLOCK,5)
MEMSI Z-COND(BLOCK, 6)
STYPE -COND(BLOCK, 7)

C
ID(1)- SUB
ID(2)- SESS

108

ID(3)- BLOCK
ID(4)- DELAY
ID(5)- SOA
ID(6)= MEMSIZ
ID(7)- CMVM
ID(8)- YESBUT
ID(9)= NOBUT

C
C INFORM EXPERIMENTER OF CONDITION
C

TYPE 30,BLOCK,DELAY,CMVM,MEMSIZ,STYPE
30 FORMAT($' Block ',13,- Delay ',12,- CMVM ',I1,' Memslz ',I1,

+' PosNeg ',I1)
C

DO 32745 K-1,10
C
C PERMUTE CM TARGETS
C

DO 32743 LOOP -1,5
J-ITWIXT(1,5)
DO 32741 1-1,4
TEMPI - CMTARG(J,I)

CMTARG(J,I) = CMTARG(LOOP,I)
CMTARG(LOOP,I) - TEMPI

32741 CONTINUE
32742 CONTINUE
32743 CONTINUE
C
C PERMUTE CM DISTRACTORS
C
32744 DO 32739 LOOP =1,5

J-ITWIXT(1,5)
DO 32737 1=1,4
TEMPI - CMDIST(J,I)
CMDIST(J,I) - CMDIST(LOOP,I)
CMDIST(LOOP,I) - TEMPI

32737 CONTINUE
32738 CONTINUE
32739 CONTINUE
C
C PERMUTE VM STIMULI
C
32740 DO 32735 LOOP -1,10

J-ITWIXT(1,1O)
DO 32733 1-1,4
TEMPI - VMSTIM(J,I)
VMSTIM(J,I) - VMSTIM(LOOP,I)
VMSTIM(LOOP,I) - TEMPI

32733 CONTINUE
32734 CONTINUE
32735 CONTINUE

109

32736 CONTINUE
32745 CONTINUE
C
C CHOOSE CM STIMULI
C
32746 IF(.NOT.(CMVM.EQ.1)) GO TO 32732

DO 32730 J=1,MEMSIZ
DO 32728 I=1,4
TARG(J,I)=CMTARG(J,I)

32728 CONTINUE
32729 CONTINUE
32730 CONTINUE
c
32731 DO 32726 J=1,5

DO 32724 1=1,4
DIST(J,I)=CMDIST(J,I)

32724 CONTINUE
32725 CONTINUE
3272b CONTINUE
C
32727 CONTINUE
C
C CHOOSE VM STIMULI
C
32732 IF(.NOT.(CMVM.EQ.2)) GO TO 32723

DO 32721 J=1,MEMSIZ
DO 32719 I=1,4
TARG(J, I)=VMSTIM(J,I)

32719 CONTINUE
32720 CONTINUE
32721 CONTINUE
C
32722 DO 32717 J=MEMSIZ4-1,MEMSIZ+5

DO 32715 I=1,4
DIST(J-MEMSIZ, I)=VMSTIM(J,I)

32715 CONTINUE
32716 CONTINUE
32717 CONTINUE
C
32718 CONTINUE
C
C == == ==PRESENT MEMORY SET =

C
C
C WRITE STIMULI TO MATROX AND STORE IDS
C
32723 DO 32713 I=1,MEMSIZ
C

IF(.NOT.(MEMSIZ.EQ.2)) GO TO 32712
XPOS=60+(1* 35)
Y POS= 100

110

C
32712 IF(.NOT.(MEMSIZ.EQ.4)) GO TO 32711

XPOS-27+(1*35)
YPOS-100

C
32711 DO 32709 J-l,4

WORD(J)-TARG(I,J)
32709 CONTINUE
C
32710 DO 32707 J-1,4

ID(80+(4*I)+J)-TARG(I ,J)
32707 CONTINUE
32708 WORD(5)-O

CALL MCTEXT(XPOS ,YPOS,WORD)
32713 CONTINUE
C
C TURN ON STIMULUS
C
32714 CALL MCSYNC ! SUNCH DISPLAY

CALL MCDISP(1) I TURN ON STIMULUS
CALL PCSET(1+1,'SINGLE-,3,3000,IFLAG1)
CALL WAIT(IFLAG1) ! WAIT FOR 3 SECONDS
CALL MCDISP(O) ! TURN OFF STIMULUS
CALL MCERAS ! ERASE MATROX

C
C WAIT FOR 1500 MSEC BEFORE PRESENTING PROBES
C

CALL PCSET(1+1,'SINGLE-,3,1500,IFLAGI)
CALL WAIT(IFLAGI)

C
C . RUNNING MEMORY TRIALS
C

IF(.NOT.(DELAY.NE.0)) GO TO 32706
DO 32704 ITRL-1,IABS(DELAY)

C
C PREPARE STIMULI DURING PRE-STIMULUS INTERVAL
C

CALL PCSET(1+1 ,'SINGLE-,3,5,IFLAG1)
POSNEG-ITWIXT(1,3)
IF(POSNEG.EQ.3) POSNEG-2

C
C IF A POSITIVE TRIAL, REPEAT STIMULUS NBACK
C IF A NEGATIVE TRIAL, SELECT A NEW STIMULUS
C

IF(.NOT.(POSNEG.EQ.1)) GO TO 32703
IF(ITRL.LE.NBACK) JSTIM-ITWIXT(1,9)
IF(ITRL.GT.NBACK) JSTIM-LSTIM(NBACK)

C
32703 IF(.NOT.(POSNEG.EQ.2)) GO TO 32702
10 JSTIM-ITWIXT(1,9)

IF(JSTTM.EQ.LSTIM(NBACK)) GOTO 10

ill

C
STORE SUCCESSIVE STIMULI

32702 LSTIM(3) = LSTIM(2)
LSTIM(2) = LSTIM(1)
LSTIM(1) = JSTIM
ID((ITRL*5)+5) = JSTIM

XPOS= 120
YPOS=1 20
DIGIT(1)=NUM(JSTIM)
DIGIT(2)=O
IF (DELAY.GT.O) CALL MCTEXT(XPOS,YPOS,DIGIT)

GALL WAIT(IFLAGI) WAIT OUT PRESTIMULUS INTERVAL

CALL MCSYNG SYNCH DISPLAY
CALL MCDISP(l) !TURN ON STIMULUS
GALL PCSET(1+1 ,SINGLE-,3, 1000 ,IFLAGI)
CALL DIRESP(RESP,-SINGLE-,2,1+1 ,RT,RSTAT)
CALL PCSET(1+2,-SINGLE-,3,200,IFLAG2)
CALL WAIT(IFLAG2)
GALL MCDISP(O) !TURN OFF STIMULUS
CALL MCERAS !ERASE MATROX
GALL WAIT(IFLAGI) !WAIT FOR END OF 1000 MSEC INTERVAL

CLASSIFY TRIAL AND STORE RT AND STIM TYPE (1-HIT, 2-CR, 3-FA, 4-MISS)
C

'LD((ITRL*5)+6) =RT
ID((ITRL*5)+7) = POSNEG
ID((ITRL*5)+8) = 0
ID((ITRL*5)+9) = 0

IF(.NOT.(RSTAT.NE.O)) GO TO 32701
C

IF(.NOT.(RESP.EQ.YESBUT)) GO TO 32700
ID((ITRL*5)+8) = 1
IF (ID((ITRL*5)+7).EQ.1) ID((ITRL*5)+9) = 1
IF (ID((ITRL*5)+7).EQ.2) ID((ITRL*5)+9) = 3

32700 IF(.NOT.(RESP.EQ.NOBUT)) GO TO 32699
ID((ITRL*5)+8) = 2
IF (ID)((ITRL*5)+7).EQ.2) ID((ITRL*5)+9) = 2
IF (ID((ITRL*5)+7).EQ.1) ID((ITRL*5)+9) - 4

C

j.)70I CONTINUE
2704 CONTINUE

'12705~ CONTINUE

1 12

C STERNBERG PROBE TRIAL .. .
C
C
C START THE DIGITIZER
C
32706 CALL ADSET(DATA,2,1,NCHAN,NPTS,3,DRATE,DSTAT)
C
C WAIT OUT BASELINE CLOCK
C

CALL PCSET(1+1 ,'SINGLE ,3 ,BASE,IFLAGI)
CALL WAIT(IFLAG1)

C
C DELIVER RETRIEVAL CUE
C

IF(.NOT.(SOA.GE.200)) GO TO 32698
XPOS-120
YPOS=120
CALL MCCHAR(XPOS,YPOS,-*-)
CALL MCSYNC ! SYNCH DISPLAY
CALL DOSET(O) !TURN ON STIMULUS MARKER
CALL MCDISP(1) ! TURN ON MATROX
CALL PCSET(1+1,'SINGLE-,3,SOA,IFLAG1)
CALL PCSET(1+2 ,SINGLE, 3,200,IFLAG2)
CALL WAIT(IFLAG2)
CALL MCDISP(O) I TURN OFF MATROX
CALL DOCLR(O) ! TURN OFF STIMULUS MARKER
CALL MCERAS ! ERASE MATROX
CALL WAIT(IFLAG1) ! WAIT FOR END OF SOA INTERVAL

C
C PREPARE STIMULI DURING PRE-STIMULUS INTERVAL
C
32698 CALL PCSET(1+1,'SINGLE" ,3,5,IFLAGI)

XPOS-112
YPOS-140

C
IF(.NOT.(STYPE.EQ.1)) GO TO 32697
I-ITWIXT(1 ,MEMSIZ)
DO 32695 J-1,4
WORD(J)-TARG(I,J)
ID(104+J)-TARG(I ,J)

32695 CONTINUE
32696 CONTINUE
C
32697 IF(.NOT.(STYPE.EQ.2)) GO TO 32694

I-ITWIXT(1,5)
DO 32692 J-1,4
WORD(J)-DIST(I ,J)
ID(104+J)-DIST(I ,J)

32692 CONTINUE
32693 CONTINUE
32694 WORD(5)-O

113

CALL MCTEXT(XPOS,YPOS,WORD)

CALL WAIT(IFLAGI)

C
CALL MCSYNC ! SYNCH DISPLAY

CALL DOSET(O) TURN ON STIMULUS MARKER

CALL MCDISP(1) I TURN ON DISPLAY

CALL PCSET(l+1,SINGLE-,3,3000,IFLAGI)
CALL DIRESP(RESP,-SINGLE-,2,1+1,RT,RSTAT)

CALL PCSET(1+2,-SINGLE-,3,200,IFLAG2)

CALL WAIT(IFLAG2)

CALL MCDISP(O) I TURN OFF DISPLAY

CALL DOCLR(O) I TURN OFF STIMULUS MARKER

CALL MCERAS I CLEAR MARTOX

CALL WAIT(IFLAGI) I WAIT FOR END OF 3 SECOND INTERVAL

C

C CLASSIFY TRIAL AND STORE RT AND STIM TYPE (1=HIT, 2-CR, 3-FA, 4=MISS)

C
ID(101) = RT

ID(102) = STYPE
ID(103) = 0
ID(104) = 0

C
IF(.NOT.(RSTAT.NE.0)) GO TO 32691

IF(.NOT.(RESP.EQ.YESBUT)) GO TO 32690
ID(103) = I

IF (ID(102).EQ.1) ID(104) = 1

IF (ID(102).EQ.2) ID(104) - 3

C
32690 IF(.NOT.(RESP.EQ.NOBUT)) GO TO 32689

ID(103) = 2
IF (ID(102).EQ.2) ID(104) = 2

IF (ID(102).EQ.1) ID(104) = 4

C
32689 CONTINUE
C

C CHECK IF ANY POINTS ARE OUT OF BOUNDS
C

32691 ERROR=O

DO 32687 IPTS=1,210

DO 32685 ICHAN=1,4

IF(IABS(DATA(ICHAN,IPTS)).GE.2047) ERROR-ERROR+l

32685 CONTINUE
32686 CONTINUE

32687 CONTINUE

C
C WRITE DATA TO TAPE

C
32688 CALL PUT(O,ID,NBYTES,MSTAT)

TYPE 20, ID(101),ID(104)
20 FORMAT(- RT -,14,- Corr ',I1)

IF (ERROR.NE.0) TYPE *,'Error in last trial of digitized EEG'

114

CALL DISP(NCHAN,NPTS)
CALL WAIT(MSTAT)

C
32751 CONTINUE
C
C KILL THE DEVICES
C
32752 CALL CLKILL

CALL MCERAS
CALL DIKILL
CALL DOKILL
CALL ADKILL
CALL KEYOFF
DO 32683 ICLOCK-2,5
CLOCK-I CLOCK
CALL PCKILL(CLOCK)

32683 CONTINUE
C
C WRITE DOUBLE EOF AND SKIP BACK I
C
32684 CALL EOF(O)

CALL EOF(O)
CALL SKIP(O,-2)

C
C RETURN TO MAIN MENU
C

GOTO 100
C
C==a=.... QUIT SECTION ------

C
C TURN OFF THE DISPLAY AND EXIT PROGRAM
C
2000 CONTINUE

CALL CLKILL
CALL MCERAS
CALL GQINIT
CALL DIKILL
CALL ADKILL
CALL KEYOFF
STOP
END

115

C********* ***

C *

C SUBROUTINES *
C *

CCC
CCC SUBROUITNE CALIB
CCC
C
C GATHERS FIVE CALIBRATION TRIALS
C

SUBROUTINE CALIB(NCHAN,NPTS,DRATE,NIDS)
IMPLICIT INTEGER (A-Z)

C
COMMON /DATA/ ID(108),DATA(5,210)
NBYTES=(NIDS+NCHAN*NPTS)*2

C
CALL LINOFF
CALL CLINIT
WRITE(7,10)

10 FORMAT(/////' TURN ON CALIBRATION PULSE-)
PAUSE 'HIT <CR> TO CONTINUE'

C DIGITIZE 5 TRIALS OF CALIBRATION DATA
DO 32765 LOOP=1,5
CALL ADSET(DATA,2,1,NCHAN,NPTS,3,DRATE,DSTAT)
CALL WAIT(DSTAT) !WAIT FOR END OF DIGITIZING
CALL PUT(O,ID,NBYTES,MSTAT)
CALL WAIT(MSTAT) !WAIT FOR END OF WRITTING TO TAPE

C
C DISPLAY DATA ON GT
C

CALL DISP(NCHANNPTS)
C
32765 CONTINUE
32766 CALL EOF(O)

CALL EOF(O)
CALL SKIP(O,-2)
RETURN
END

116

CCC
CCC DISP
CCC

SUBROUTINE DISP(NCHAN ,NPTS)

COMMON /DATA/ ID(108),DATA(5,210)

C SUBROUTINE TO DISPLAY WAVEFORM TO GT DISPLAY

C
C DISPLAY DATA ON GT44

C
CALL DEBASE(DATA,NCHAN,NPTS,2,1 ,NPTS,XBAR)

CALL GQDISP(1,2,DATA,NCHAN,NPTS,-2)
CALL DEBASE(DATA,NCHAN,NPTS,3,1 ,NPTS,XBAR)

CALL GQDISP(2,3,DATA,NCHAN,NPTS,-2)
CALL DEBASE(DATA,NCHAN,NPTS,4 ,1 ,NPTS,XBAR)

CALL GQDISP(3 ,4,DATA,NCHAN,NPTS,-2)
CALL DEBASE(DATA,NCHAN,NPTS,1,1 ,NPTS ,XBAR)

CALL GQDISP(4,1 ,DATA,NCHAN,NPTS,-2)
CALL DEBASE(DATA,NCRAN,NPTS,5,1 ,NPTS,XBAR)

CALL GQDISP5 ,5,DATA,NCHAN,NPTS,-2)
RETURN
END

C ====a . .

117

CCC
CCC ITWIXT
ccc

C RETURNS AN INTEGER IN THE RANGE GIVEN, RANDOMLY CHOSEN.

INTEGER FUNCTION ITWIXT(MlN,MAX)
IMPLICIT INTEGER (A-Z)
REAL RAN
COMMON /RAN! S1,S2

100 ITWIXT=RAN(S1 ,S2)*(MAX-MIN+1)4MIN
IF(ITWIXT.LT.MIN.OR.ITWIXT.GT.MAX) GOTO 100
RETURN
END

C---------------------= ===

118

CCC
CCC SUBROUTINE KEYS
CCC
C
C CHECK FOR STOP OR QUIT COMMANDS (KEY SUBROUTINE)
C

SUBROUTINE KEYS(KEYFLG)
C

INTEGER KEYFLG
BYTE KEY
KEYFLG-O
KEY-KEYCHK(IDUM)
IF(KEY.NE.'P') GOTO 10
CALL KEYOFF
PAUSE '- HIT <CR> TO CONTINUE --

CALL KEYON
10 IF(KEY.NE.-Q') GOTO 20

CALL KEYOFF
WRITE(7,*) -BLOCK ABORTED: BACK TO MENU (2 EOFS WRITTEN)'
KEYFLG- 1

20 RETURN
END

119

CCC
CCC TAPE
CCC
C
C SUBROUTINE TO MANIPULATE TAPE.

C
SUBROUTINE TAPE(NCHAN,NPTS ,NIDS)

IMPLICIT INTEGER (A-Z)
BYTE IOPTI

COMMON /DATA/ ID(108),DATA(5,210)

C
C FIND NBYTES FOR TAPE READ, SKIP A LINE

C
NBYTES=(NIDS+NCHAN*NPTS)*2

TYPE *1

C GET THE OPTION FROM THE USER

C
5 WRITE(7,10)
10 FORMAT(o$TAPE: (E)XIT, (R)EWIND,',

+ o (L)ABEL, (S)KIP, (V)ERIFY, (W)EOF>)

READ(5,15) IOPTI

15 FORMAT(A1)
C
C JUMP ACCORDING TO OPTION

C
IF(IOPT1.EQ.'E') RETURN

IF(IOPTI.EQ.R) CALL SKIP(OO0)
IF(IOPT.EQ.W) CALL EOF(O)

IF(IOPT1.EQ.5S) GOTO 50

IF(IOPT1.EQ.'Vo) GOTO 100

IF(IOPTI.EQ/L') GOTO 300
GOTO 5

C
C SKIP EOF OPTION
C
50 WRITE(7,55)
55 FORMAT(o$NUMBER OF EOFS TO SKIP Y)

READ(5,*) IFILES
CALL SKIP(O,IFILES)
GOTO 5

C
C VERIFY TAPE OPTION - READ ONLY IDS

C
100 DO 200 NT-1,9000

CALL GET(O ,ID,NBYTES,MSTAT)
CALL WAIT(MSTAT)
IF(MSTAT.NE.1) GOTO 210
IF(ID(l).NE."-177777) GOTO 150

125 FORMAT(' LABEL:',49AI)

120

GOTO 200
150 WRITE(7,175) NT,(ID(K),K-1,108)
175 FORMAT(' RECORD: ',16,/,11(1016/))
C
C DISPLAY DATA ON GT
C

CALL DISP(NCHAN,NPTS)
C
200 CONTINUE
210 NT-NT-i

GOTO 5
C
C WRITE A LABEL
C
300 CALL ZERO(ID,100)

ID(1)-"177777
WRITE(7 ,311)

311 FORMAT('$LABEL (LESS THAN 50 CHARS) Y)
READ(5,310) (ID(L),L-2,50)

310 FORMAT(49A1)
CALL PUT(O,ID,100,MSTAT)
CALL WAIT(MSTAT)
CALL ZERO(ID,100)
GOTO 5
END

121

Appendix J

List of Subroutine calls not included in the subroutine section of PMSM.FLX.
A description of the subroutine function and the arguments is included.

122

Adkil: - Abort an A/D Conversion in Progress

Adkill - Abort an A/D Conversion in Progress

Format:
CALL adkill

Description:

The ADKILL Subroutine aborts any ADSET that might be in
progress at the time. It is useful only in those cases where
the program needs to abort any I/0 activity that might be in progress
before Exiting. When it is known that no ADSET is in progress, it
is not necessary to Call this Subroutine before Exiting. The "Stat"
variable for the ADSET Call Aborted is not Set to One by this Call.

123

AdSet - Digitize a Block of Data

AdSet - Digitize a Block of Data

Format:

CALL adset
(buffer,gain,start,nchan,npts,rate,count,stat)

Where:

buffer (Integer Array, Nchan by Npts)
The Buffer into which the the Digitized Data are

stored.

gain (Int Val, 0-3) Programmable Gain Select

0: Multiply Input by 1 (-10 to 10 Volt Range)
1: Multiply Input by 2 (-5 to 5 Volt Range)

2: Multiply Input by 4 (-2.5 to 2.5 Volt Range)
3: Multiply Input by 8 (-1.25 to 1.25 Volt Range)

start (Int Val, 1-16) Channel to Start each Scan With
nchan (Int Val, 1-16) Number of Channels to Sample

on each Scan
npts (Int Val) The Number of Scans to do, or, the number

of Points in each Sweep. (Npnts x Nchan = Buffer Size)

rate (Int Val, 0-7) Basic Tick Rate for the Inter Scan Clock.
Rates Are:

0: 1 Microsecond 1 Megahertz

1: 10 Microseconds 100 Kilohertz
2: 100 Microseconds 10 Kilohertz
3: 1 Millisecond 1 Kilohertz

4: 10 Milliseconds 100 Hertz

5: 100 Milliseconds 10 Hertz

6: 1 Second I Hertz

7: 10 Seconds 100 Millihertz

count (Int Val) Number of Units of "Rate" to count off

between each scan.
stat (Int Var) This Variable keeps the user informed of the

status of the A/D Conversion. When the ADSET is
executed, this variable is cleared, (that is, assigned
the value Zero). When the last Scan of the Sweep is
finished and the user's data array is full, "Stat" is

assigned the Value One...
0: A/D Conversion in Progress
1: A/D Converter Sweep is Finished

Description:

The ADSET Subroutine permits its user to Digitize a Block of

Data composed of "Npts" sets of "Nchan" Samples. The Call works
as Follows. When an ADSET is Executed, "Nchan" Channels starting

at Channel "Schan" are Digitized right away.

A Set of Samples across several channels digitized at (virtually) the

124

same time such as this will be refered to herein as a "Scan".
Then an interval
determined by "Rate" and "Count" is clocked off (by the A/D System's
built in clock), and another Scan is performed.
This process continues until "Npts" Scans have been performed.
A complete set of clock scheduled Scans as described above is
refered to as a "Sweep".

The Array into which the Data will go should be DIMENSIONed
to contain "Nchan" by "Npts" Elements. BUFFER(I,J) will address
the datum read from Channel "I" during the "J"th Scan.

The Values returned for each digitized value are 12 Bit
Signed Integers. A value of -10 Volts presented to the A/D Inputs
will result in a value of -2048 being returned by Adset when that
channel is sampled and digitized. A value of 0 Volts will cause
a Zero to be returned. A value of +5 Volts returns 1024 and a
value of 10 Volts returns 2048. Other voltages vary the A/D
result proportionally between the two extreme value, of course.
The input sensitivity of the A/D System can be altered with

the "Gain" Parameter. This parameter reduces the Voltage Range
over which the Digitizer's Values are assigned, and, thus, has
the effect of increasing the resolution with which the values in
the more restrictred range are digitized.

The "Schan" Parameter determines the starting input
channel number. The "Nchan" Parameter indicates the number of
channels, starting with "Schan" that will be samples on each Scan.

"Npts" determines the number of Scans that will be made by
the A/D System. Note that there will be "Npts" Samples for each
of the "Nchan" Channels sampled in "Buffer" when ADSET is finished.

The "Rate" and "Count" Parameters, taken together, determine
the interval between Scans. The Rate Parameter selects the basic
unit for the A/D's Interscan Clock. For Example, a "Rate" Parameter
of 3 and a "Count" Parameter of 5 will result in sucessive scans being
separated by 5 Milliseconds.

The "Stat" Variable is Zeroed by the ADSET Call itself.
As soon as the digitizer is started, the ADSET Call Returns.
The User's Program may go about other business while the
Digitizer Sweep is performed. When the complete sweep is finished,
the "Stat" Variable is Set to One.

125

Clinit - Enable the Hard Clock so that Software Timers can be Used

Clinit -- Enable the Hard Clock so that Software Timers can be iJd

Format:
CALL clinit
CALL clinit(unit)

CALL clinit(unit,base,count)

Where:

unit (Int Val) Number of the Hard Clock Unit to

use with CLPACK.

base (Int Val) Basic Rate for the Programmable

Clock.

count (Int Val) Number of Units of "Base" to Count

Off per Each Interrupt.

Description:

The CLINIT Subroutine Starts Up the

Programmable Clock that services CLPACK's Software Timers.

This Subroutine must be executed before any CLSET or CLSTOP

Calls may be executed.

The Zero Argument Form of CLINIT should be used

for most applications.

126

CMkill - Turn Off CLPACK's Hardware Programmable Clock

CMkill -- Turn Off CLPACK's Hardware Programmable Clock

Format:
CALL clkill

Description:

The CLKILL Subroutine Disables the Programmable Clock

that services CLPACK's Software Timers. This has the effect
of turning off any Software Timers that might have been active,
since, with no Hardware Clock running, they cannot be serviced.

127

Diinit - Enable Parallel Inputs

Diinit - Enable Parallel Inputs

Format:
CALL diinit
CALL diinit(max)

Where:
max (Int Val) Number of the Highest Bit for which an

Input Can Occur.

Description:

The DIINIT Subroutine Enables the Parallel Input
Interface. This Subroutine must be executed in order for the
DISET, DIVAL, and DIRESP Subroutines to work.

The Optional "Max" Parameter indicates the Highest Bit Number
for which inputs are expected.

128

Dikill - Turn off Digital Inputs Entirely

Dikill -- Turn off Digital Inputs Entirely...

Format:
CALL dikill

Description:

The DIKILL Subroutine turns off Parallel Inputs,
thus effectivly terminating all digital input recording
until another DIINIT is done.

129

DiResp - Report an input for some bit or other

DiResp -- Report an input for some bit or other

Format:
CALL DiResp(bit,mode,stat)

Where:

bit (Int Var) Place in which the Bit Position of the
latest Digital Input "Hit" is Stored.

mode (Int or String Val) Single or Repeat Interrupt Mode:

0 or 'Single': Single Interrupt Mode.
I or -Repeat': Repeat Interrupt Mode.

stat (Int Var) Variable that is incremented whenever

an input occurs. DiResp Zeroes this Flag Initially.

-OR-

CALL DiResp(bit,mode,type,src,dst,stat)

Where:
bit (Int Var) Place in which the bit number of the

latest digital input "hit" is returned.

mode (Int or String Value) Single or Repeat interrupt mode:

0 or -Single': Single interrupt mode.
1 or -Repeat-: Repeat interrupt mode.

type (Int Value) Where to get response time:
1: Read Sofware Timer indicated by "src".
2: Read Programmable Clock indicated by "src".
3: Copy variable given as "src" when a response

occurs.
src (Int Value or Variable) Depends on "type" Above.

dst (Int Variable) Variable to which the response time
for the latest hit, as indicated by "mode"

and "src" will be copied. Note that this variable is
not zeroed or otherwise changed by the call to DiResp
unless an input event occurs. If no input activity takes
place, "dst" retains the value it had before the call to

DiResp.
stat (Int Variable) Variable that is incremented whenever

a digital input occurs.

-OR-

CALL diresp()

Description:

The DIRESP subroutine enables a Fortran program to

respond to Inputs for any of the Parallel I/O System's Bits.
Whenever an Input Bit is Set (by the External Hardware), the

130

Bit Number on which the Input occurred is copied into "Bit" and
One is added to the value of "Flag". "Flag" is Zeroed by the
initial call to DIRESP.

The "Mode" Parameter spcecifes whether DIRESP will

stop reporting bits after the first hit, or whether it will
continue to report bits until it is disabled.

The "Type", "Src" and "Dst" Parameters allow the
User to record a response time along with the bit number.
The "Mode" and "Src" Paramters indicates where this response time
should be obtained. When a Response occurs, this time
is written to "Dst".

If DIRESP is called with no parameters, the effect of
any previous DIRESP Call is canceled.

DIINIT must be executed before DIRESP is called in order
for DIRESP to work effectively. The execution of a DIINIT or
a DIKILL, will (of course) cancel any pending DIRESP.

131

0 iset Enable Digital IupiL Reporting for a Given Bit

-- Enabic Digital Input lu-ortn 6 for a Given Bit.

ormat:
CALL diset (bit .ode, staii

"here:
bit (Int Var, 0-15) Number uf the bit to watch.

mode (Int or String Val) Single or Repeat Interrupt Mode:
0 or -Single': Single Interrupt Mode.

I or "RepeaL': Repeat Interrupt Mode.
star (Int Var) Variable that will be up'ed when

an input from the Bit indicated by "Bit" is detected.

"Stat" is Zero'ed by the Call to DISET.

-OR-

CALL diset(bit,mode, type,src,dst,flag)
Whare:

bit (Int Val, 0-15) Bit Position to Watch.

mode (Int or String Val) Single or Repeat Interrupt Mode:
0 or -Single': Single Interrupt Mode.

I cr 'Repeat': Repeat Interrupt Mode.

type (Int Val) Where to get Response Time:
i: Read Sofware Timer indicated by "Src".
2: Read Programmable Clock indicated by "Src".

3: Copy Var given as "Src" when a response

occurs.

src (Int Var) Depends on "Mode" Above.
dst (Int Var) Variable to which the Response time

for the latest hit, as indicated by "Mode"
and "Src" will be copied.

stat (Int Var) Variable that is Incremented whenever
an Input on the indicated bit comes in. This variable

is Cleared by the DISET Call Itself.

Description:

Thie DISET Subroutine enables a User's Fortran Program to

respond to activity on a given Parallel Interface Input Bit.
When the DISET Subroutine is executed, subsequent inputs for the

"Watched" Bit will cause the indicated "Stat" Variable to be

incremented. Since each Input will cause "Stat" to increase,

"Stat" will be a count of the number of Inputs that have occurred

for the Watched Bit.

The "Mode" Parameter spcecifes whether DIRESP will

stop reporting bits aftEr the first hit, or whether it will
oc,nu~Ie to report bits ,,ntit it is disabled.

The "Type", "Src" and "Dst" Pirameters allow the

L 32

User to record a response time along with the bit number.
The "Mode" and "Src" Paramters indicates where this response time
should be obtained. When a Response occurs, this time
is written to "Dst".

Inputs on the Watched Bit will be processed until either
a DICLR for the Watched Bit, or a DIINIT or DIKILL is executed.

The DIINIT Subroutine must be executed before DISET can
be used.

133

Doclr - Clear a Specified Output Bit

Doclr - Clear a Specified Output Bit

Format:
CALL doclr(bit)

Where:

bit (Int Val, 0-15) Bit to Turn Off

Description:

The DOCLR Subroutine Turns Off the Digital Output Bit Designated

by the "Bit" Parameter. Only the designated bit is affected.

This Subroutine clears only the Bit Indicated.

134

Doinit - Clear the Digital Output Register

Doinit - Clear the Digital Output Register

Format:
CALL doinit

Description:

The DOINIT Subroutine Clears the Parallel Interface's
Digital Output Register. All 16 Digital Output Bits are Turned Off.
It is not necessary to execute a DOINIT to use the otner Digital
Output Subroutines, but it is often a good idea to make sure that
all the Digital Output Bits are Off when starting a program that ises
Digital Outputs. A Call to DOINIT is equivalent to a Call to DOKILL
or a DOVAL(O).

135

Dokill - Clear the Digital Output Register

Format:
CALL dokill

Description:

The DOKILL Subroutine Clears All the Digital Output

Bits. It is identical to the DOINIT Subroutine. The Two Names
are provided for compatibility with other Digital I/0 Subroutine
Packages. It is not necessary to perform a DOKILL before Exiting
or Aborting a Program that has set Output Bits, but, depending
on the nature of the equipment connected to the Digital Output
System, it is often a good idea.

136

Doset - Turn on a Specified Digital Output Bit

Doset - Turn on a Specified Digital Output Bit

Format:
CALL doset(bit)

Where:
bit (Int Val, 0-15) Output Bit to Set

Description:

The DOSET Subroutine turns on the Bit designated by the
"Bit" Parameter. Bits are Numbered from Right to Left in the
Digital Output Register from 0 to 15. This is the conventional
way that bit positions are numbered on the PDP11. The designated
Output Bit remains set until a DOCLR is executed for it, or until
a DOINIT or a DOKILL is Called. The DOINIT Subroutine need not
be executed to use DOSET. DOINIT and DOKILL are equivalent to
DOCLRs for bits 0 through 15.

137

GqDisp Display a waveform

GqDisp - Display a waveform

Format:
CALL GqDisp(loc,chan,data,nchan,npts,scale)

Where:
loc (Int Value, 1-12) This parameter gives the waveform location.

Waveforms are numbered with waveform 1 at the upper left,
waveform 3 at the lower left, waveform 4 at the upper right,
and waveform 6 at the lower right. Waveforms 7 through 12
overlay waveforms 1 through 6.

chan (Int Value) "Channel" from the data array which is to be
displayed. This value should be in the range from 1 to
nchan.

data (Int Array, nchan x npts) Array from which the data we
will display are to be taken.

nchan (Int Value) Number of channels in the data zr-ay
npts (Int Value) Number of points in the data array.
scale (Int Value) Waveform scale factor. Eight is subtracted from

this value, and the result is used as follows: If > 0,

each point in the waveform is multiplied by the result.

If < 0, each point in the waveform is divided by the
absolute value of the result. If 0, the data are not

scaled.

Description:

The GqDisp subroutine displays a waveform in an indicated display

frame on the display created using Gqlnit. Previously written data
are erased first. This subroutine is compatible with GTDISP, except
that all six waveforms may be overlayed. Hence, "loc" values 7 through
9 will overlay the waveforms in the left hand column of the display,

instead of in the right hand column as with GTPACK. To overlay the
right hand column, use "loc" values 10 through 12.

138

GqIrIt - Initialize the QRGB-Graph Waveform Display

GqInit - Initialize the QRGB-Graph Waveform Display

Format:
CALL Gqlnit(flag)

Where:
flag (Int Value) Dummy argument for compatibility with

GtPack.

Description:

The GqInit subroutine sets up the Matrox QRGB-Graph waveform
display. The "flag" argument does nothing, it is provided for
compatibility with GTPACK. The waveform display is always redrawn
by Gqlnit.

139

GqLabl - Set a QRGB-Graph display label

GqLabl - Set a QRGB-Graph display label

Format:
CALL GqLabl(loc, string)

Where:
loc (Int Value, 1-12) Label Location.
string (String) New label string.

Description:

The GqLabl subroutine resets a Matrox QRGE-Graph waveform
display label. To erase a label, an explicit null
string (either a ", or a null terminated array) mu.'t be given.
No zero argument form is allowed. Note that GTPACK allowed a
zero argument form to clear a label. Labels are located just below

the waveform frame corresponding the the "loc" value given. Labels
for "loc" values 1-6 are written above those for values 7-12.

140

GqTtl - Set the QRGB-Graph display title line

GqTtl - Set the QRGB-Graph display title line

Format:
CALL GqTtl(string)

Where:
string (String) New title string.

Description:

The GqTtl subroutine resets the Matrox QRGB-Graph waveform
display title line. To erase the title line, an explicit null
string (either a ", or a null terminated array) must be given.
No zero argument form is allowed. Note that GTPACK allowed a
zero argument form to clear the title line.

141

McChar - Write a Character on the Matrox

McChar - Write a Character on the Matrox

Format:
CALL mcchar(c)
CALL mcchar(x,y,c)

Where:
c (Byte Val) Character to write...
x,y (Int Vals) New X and Y Positions...

Description:

The MCCHAR Subroutine writes a character on the screen of the
current size and color at the given screen position. If no
position is given, the current cursor position is assumed.

142

McDisp - Turn Matrox Display On or Off

McDisp - Turn Matrox Display On or Off

Format:
CALL mcdisp(val)

Where:
val (Int Val) 0: Turn Off the Matrox, 1: Turn On the Matrox

Description:

The MCDISP Subroutine turns the Matrox On or Off.

143

McEras - Make an Area the Background Color

McEras - Make an Area the Background Color

Format:
CALL mceras
CALL mceras(x,y)
CALL mceras(a,b,x,y)

Where:
a,b (Int Vals) Coordinates of Erase Area Upper Left Hand Corner.

x,y (Int Vals) Coordinates of Erase Area Lower Right Hand Corner.

Description:

This MCERAS Subroutine sets an area of the Matrox Screen to the

current background color. If no coordinates are given, a hardware flood is

performed using the current background color. If two coordinates are
given,
the rectangle determined by the current position on the upper left, and

the given point on the lower right will be colored using the current

background color. If four parameters are given, the first two will

designate the upper left hand corner of the area to erase, and the

next two will designate the lower right hand corner of the area.

144

Mclnit - Initialize the Matrox

Mclnit - Initialize the Matrox

Format:

CALL mcinit

CALL mcinit(flag)
Where:

flag (Int Val) 0: Don't Erase. 1: Erase.

Description:

The MCINIT Subroutine initializes the Matrox. It should be

called before any other MCPACK Subroutines are called.

If a "Flag" value is given, the screen is erased or not erased
as indicated. If no value is given, the screen is not erased.
Leaving the screen unerased by MCINIT allows programs to generate
Matrox images and chain to other programs without losing them.

MCINIT sets defaults as follows:

Foreground: 256, or White.
Background: 0, or Black.

Spacing: Nonproportional.

Position: (0,0)
Origin: (0,0)

Scroll: 0
Video: On
Reverse: Off

If an initial erase is not done, some of these default values
will not be established until a subsequent MCPACK Subroutine accesses
the Matrox.

145

McSync - Wait for Blanking to Start

McSync - Wait for Blanking to Start

Format:
CALL mcsync

Description:

The MCSYNC Subroutine waits until the Matrox-s Vertical Blanking

Bit goes from Off to On.

146

Mctext - Write a Null Terminated String on the Matrox

Mctext - Write a Null Terminated String on the Matrox

Format:
CALL mctext(string)
CALL mctext(x,y,string)

Where:
x,y (Int Vals) Place to put the cursor at first
string (Byte Array, or Whatnot) A null terminated

buffer filled with Ascii Characters.

Description:

The MCTEXT writes a Null Terminated String of Characters
out on the Matrox in the current Color and Size. If no position
is specified, the current cursor position is used.

147

Pcinit - Initialize a Programmable Clock

Pcinit - Initialize a Programmable Clock

Format:
CALL pcinit(clock)

Where:
clock (Int Val, 1-6) Clock to Set Up.

- OR -

i-ipcini()
Where:

i (Int Result) Clock Allocated (1-6, or 0 if None are
available.)

Description:

The PCINIT Subroutine initializes the indicated Programmable

Clock. This Subroutine must be called before any given clock
can be used. "Clock" specifies which clock should be initialized.

The given clock is marked as busy until a PCKILL is performed for

it. Attempts to Initialize it in the mean time will fail.

The IPCINI Function returns the number of an available
Programmable Clock, and initializes that clock. If no clocks

are available, Zero is Returned.

148

Pckill - Turn Off and Free One or All Clocks

Pckill - Turn Off and Free One or All Clocks

Format:
CALL pckill
CALL pckill(clock)

Where:
clock (Int Val, 1-6) Clock to Kill and Free

Description:

The PCKILL Subroutine Turns Off and Frees One or all
of the Programmable Clocks. If "Clock" is specified, only
the Indicated Clock is Killed. If "Clock" is not specified,
all the Clocks are Killed.

149

Pcset - Turn On a Programmable Clock

Pcset - Turn On a Programmable Clock

Format:
CALL pcset(clock,mode,rate,count)
CALL pcset(clock,mode,ratecount,stat)

Where:
clock (Int Val, 1-6) Clock to Use.
mode (Int Val) Single or Repeat Mode.

0 or 'Single': Single Sweep Mode
1 or 'Repeat': Repeat Sweep Mode

rate (Int Val, 0-7) Basic Clock Rate:
0: 1 Microsecond 1 Megahertz
1: 10 Microseconds 100 Kilohertz
2: 100 Microseconds 10 Kilohertz
3: 1 Millisecond 1 Kilohertz
4: 10 Milliseconds 100 Hertz
5: 100 Milliseconds 10 Hertz

6: 1 Second 1 Hertz
7: 10 Seconds 100 Millihertz

count (Int Val, 0-32767) Number of Units of "Rate" per
Interrupt. (0 means 32768 Units.)

stat (Int Var) Status Variable. This is Zeroed when
PCSET is Called. One is Added to "Stat" every
time a Clock Sweep Completes.

Description:

The PCSET Subroutine starts one of Pearl Il's programmable

clocks. Clocks may be run either in "Single Sweep Mode", in
which case one interval of the specified rate is timed, or in
"Repeat Sweep Mode", in which the clock times intervals indefinitely
until stcpped.

The "Clock" Parameter specifies which of Pearl II's programmable
clocks should be used.

The "Mode" Parameter indicates whether the Clock should
run in Single or Repeat Sweep Mode.

The "Rate" Parameter specifies the Basic Rate at which
the Clock will run. "Count" units at the given rate will
be timed for each sweep.

The "Stat" Variable is zeroed by the call to PCSET.
One is added to this Variable every time a Clock Sweep is
completed.

If "Stat" is not given, the clock is run without interrupts.

150

If a timer is running when this subroutine is called, it

is turned off first.

151

Wait - Wait for a Variable to Become Non-Zero

Wait -- Wait for a Variable to Become Non-Zero

Format:
CALL wait(vl)
CALL wait(vl,v2,...,vn)

Where:
vl...vn (Int Vars) The Variables to Test for Non-Zero Values

Description:

The WAIT Subroutine Tests the Values of All the Variables Passed
to it. As soon as ANY of these variables becomes something other
than Zero, the Subroutine Returns to the User's Program. The
typical application for this Subroutine is testing the "Stat"
Variables that keep the user informed of the progress of various
other LABPAK Subroutine initiated activity.

Note:

The WAIT Subroutine is implemented using the PDP1I's WAIT
Instruction. This instruction causes the Central Processor
to relinquish control of the Bus to those DMA Devices that
might be competing for it until an Interrupt Request has been
serviced. The Variable list is first tested when this Subroutine
is called, and if the contents of all the variables are zero,
a WAIT instruction is executed. When this instruction
falls through, (meaning that an interrupt service routine
that might have changed the value of one of the variables was
executed) the tests are performed again. When One of the Variables
becomes Non-Zero, the Subroutine falls through.

152

Zero - Array Zeroing Subroutine

Zero -- Array Zeroing Subroutine

Format:
CALL zero(buf,size)

Where:
Buf (Array, "Size" Bytes in Size) The Array

to Fill with Zeroes.
Size (Int Val) The Size, in Bytes, of the "Buf" Array.

Description:

The ZERO Subroutine Sets every element of the indicated
Array to Zero. It does this in a manner more efficient than the
corresponding DO Loop Fortran Code could do it, and is more
concise. The Size in Bytes of an Array Variable may be calculated
by multiplying the sizes of the Array's Dimensions together and
multiplying this result by the size of an individual element of the
Array.

Example:

The following short Fortran Program illustrates the use
of the ZERO Subroutine:

PROGRAM zero
C
C Declare Some Arrays Here...
C

INTEGER dog(2,4,6.) !2*4*6*2 - 96 Bytes
REAL mouse(100,2) !100*2*4 - 800 Bytes

C
C Zero these and Exit...
C

CALL zero(dog,2*4*6*2) !Dog is all Zeroes Now...
CALL zero(cat,100*2*4) !Cat is Zeroed, too...
STOP 'Dog and Cat Zeroed... !Say what this did...
END

153

Appendix K

F.PEAK Program to perform single trial data analysis on ERPs collected by
PMSM. Also generates are average waveforms for each experimental condition.
This program creates unadjusted and latency adjusted waveforms, and single
trial estimates of P300 latency and amplitude. Four different algorithms
are included: Vector cross correlation, Pz Cross correlation, Vector peak
picking, and Pz peak picking.

154

C *

C F.PEAK *

C *

C PROGRAMMER: DAVID STRAYER *
C UNIVERSITY OF ILLINOIS *
C *

C
C IDS USED AND GENERATED BY THIS PROGRAM
C
C ID(1)=SUBJECT
C ID(2)=SESSION
C ID(3)=BLOCK
C ID(4)=EEG CHANNEL (EOG, FZ, CZ, PZ, STM)
C ID(5)-DELAY
C ID(6)=SOA
C ID(7)-MEMSIZ
C ID(8)=CMVM
C ID(9)=REACTION TIME
C ID(10)=RESPONSE CLASSIFICATION (O=NO RESPONSE, 1=HIT, 2=CR,
C 3=FA,4=MISS)
C
C ID'S INCLUDED IN THE OUTPUT OF THIS PROGRAM
C
C SINGLE TRIAL ESTIMATES OF P300 TO S1 (300 TO 600 MSEC)
C
C ID(I)-LATENCY OF CROSS CORR P300 (COMPOSITE)
C ID(12)-AMPLITUDE OF CROSS CORR P300 (COMPOSITE)
C ID(13)-LATENCY OF CROSS CORR P300 (PZ CHANNEL)
C ID(14)-AMPLITUDE OF CROSS CORR P300 (PZ CHANNEL)
C ID(15)=LATENCY OF PEAKPICKED P300 (COMPOSITE)
C ID(16)=AMPLITUDE OF PEAKPICKED P300 (COMPOSITE)
C ID(17)-LATENCY OF PEAK PICKED P300 (PZ CHANNEL)
C ID(18)-AMPLITUDE OF PEAK PICKED P300 (PZ CHANNEL)
C
C SINGLE TRIAL ESTIMATES OF P300 TO S2 (800 TO 1700 MSEC)
C
C ID(19)-LATENCY OF CROSS CORR P300 (COMPOSITE)
C ID(20)-AMPLITUDE OF CROSS CORR P300 (COMPOSITE)
C ID(21)-LATENCY OF CROSS CORR P300 (PZ CHANNEL)
C ID(22)-AMPLITUDE OF CROSS CORR P300 (PZ CHANNEL)
C ID(23)-LATENCY OF PEAKPICKED P300 (COMPOSITE)
C ID(24)-AMPLITUDE OF PEAKPICKED P300 (COMPOSITE)
C ID(25)-LATENCY OF PEAK PICKED P300 (PZ CHANNEL)
C ID(26)-AMPLITUDE OF PEAK PICKED P300 (PZ CHANNEL)
C

REAL ID(26),DATA(210,5),YDATA(210,5),
+FZ(210),CZ(210),PZ(210),P3(210),BASE(3),TEMP(50),
+NTRIAL(24,5),AVEID(26,24,5),AVE(210,3,24,5),BAVE(44,5)

C

155

INTEGER FNAME(6),LOW(2),HIGH(2),BIN,IDS(108)
C

CALL OPEN(3,ISTAT)
C
C DEFINE WINDOW ONSET AND OFFSET
C

DATA LOW(1),HIGH(1)/40,70/ I FOR S1
DATA LOW(2),HIGH(2)/90,180/ I FOR S2

C
C ASSIGN FILES
C

CALL ASARG(1, 20,"SUB ",FNAME)
CALL ASARG(2, 30,"DATA ",FNAME)
CALL ASARG(3,-40,"PK-OUT ",FNAME)
CALL ASARG(4,-41,"ADJ-OUT ",FNAME)

C
C DEFINE TEMPLET (POSITIVE SEGMENT OF 0.5 HZ SINE WAVE)
C

FOR 1-1,50
TEMP(I)-COS(I*6.2829/50)
END FOR

C
C SET UP FILTER PARAMETERS SEE RUTCHKIN AND GLASER (1979)
C

TT-10.0 ! SAMPLING INTERVAL
NPTS-210 ! NUMBER OF POINTS IN WAVEFORM TO FILTER
LGL-6 ! LENGTH OF LOW PASS FILTER
NUML=2 ! NUMBER OF ITERATIONS OF LOW PASS FILTER
LGH=O ! LENGTH OF HIGH PASS FILTER
NUMH=O ! NUMBER OF ITERATIONS OF HIGH PASS FILTER
NSTART- +(LGL*NUML)+(LGH*NUMH)
NSTOP=NPTS-(LGL*NUML+LGH*NUMH)
CALL FILTN(1,NPTS,NSTART,NSTOP,I,LGL,NUML,LGH,NUMH)

C
C DESCRIBE FILTER PARAMETERS
C

FOL-1000.O/((2*LGL+1)*TT)
IF(NUML.EQ.1) F3DB-.44*FOL
IF(NUML.EQ.2) F3DB=.31*FOL
WRITE(3,*) F3DB,-Hz (-3dB) low pass filter'

C
C READ IN A TRIAL
C

LOOP
C

FOR J=1,5
READ(30,100,END-50) (ID(K),K-1,1O),(DATA(I,J),I-1,210)
END FOR

C
C FIND THIS TRIAL IN THE SUB ID FILE
C

156

1READ(20,1O1) IDS
IF(ID(1).NE.IDS(1).OR.ID(2).NE.IDS(2).OR.ID(3).NE.IDS(3)) GOTO I
DELAY-=IDS(4)

C
C DETERM4INE NUMBER OF CORRECT RUNNING MEMORY TRIALS
C

ICORR-0
IF(DELAY.GT.2) THEN
FOR I-3 ,ABS(DELAY)
IF(IDS(I*5+7).EQ.IDS(I*5+8)) ICORR=ICORR+1
END FOR
END IF

C
IF(ICORR.GE.((DELAY-2.O)*O.5O)) THEN ! ABOVE CHANCE ACCURACY

C
FOR EPOCH=1,2

C
C COMPUTE BASELINE (AVERAGE OF 100 MSEC EPOCH)
C 51 EPOCH BASELINE: -100 MSEC TO 0 MSEC
C S2 EPOCH BASELINE: 500 MSEC TO 600 MSEC
C

FOR J-~1,3
BASE(J)-O.
FOR K-1+((EPOCH-1)*59),10+((EPOCH-1)*59)
BASE(J)=BASE(J)+(DATA(K, (J+1))/1O.O)
END FOR
END FOR

C
C SUBTRACT BASELINE
C

FOR IPT-1I,210
FZ(IPT)=DATA(IPT,2)-BASE(1)
CZ(IPT)-DATA(IPT,3)-BASE(2)
PZ(IPT)-DATA(IPT,4)-BASE(3)
END FOR

C
C FILTER THE EEG DATA
C

CALL FILTR(FZ,FZ)
CALL FILTR(CZ,CZ)
CALL FILTR(PZ,PZ)

C
C COMPUTE THE P300 VECTOR FILTER
C

CALL VECT(210,300.,15.,FZ,CZPZ,P3)
C
C COMPUTE CROSS CORRELATION ON P300 VECTOR (COMPOSITE)
C

CALL CROSS(210,LOW(EPOCH),HIGH(EPOCH),TEMP,P3,CORP3,LAT,A$P)
ID(3+(8*EPOCH))-LAT
ID(4+(8*EPOCH))-AMP

157

IF(CORP3.LE..3O) ID(3+(8*EPOCH))=O.O
C
C COMPUTE CORSS CORRELATION ON PZ CHANNEL
C

CALL CROSS(21O,LOW(EPOCH) ,HIGH(EPOCH) ,TEMP,PZ,CORPZ,LAT,AHP)
ID(5+(8*EPOCH))=LAT
ID(6+(8*EPOCH))=AMP
IF(CORPZ.LE..30) ID(5+(8*EPOCH))=O.O

C
C PEAK PICK ON P300 VECTOR FILTER OUTPUT
C

CALL PKPICK(P3,210,LOW(EPOCH),HIGH(EPOCH),LAT,AMP)
ID(7+(8*EPOCH))=LAT
ID(8+(8*EPOCH))=AMP
IF(ID(7+(8*EPOCH)).LE.(LOW(EPOCH)*10-100).OR.ID(7+(8*EPOCH)).GE.

+(HIGH(EPOCH)*10-10O)) ID.(7+(8*EPOCH))=O.O
C
C PEAK PICK ON PZ CHANNEL
C

CALL PKPICK(PZ,210,LOW(EPOCH) ,HIGH(EPOCH),LAT,AMP)
ID(9+(8*EPOCH))=LAT
ID(104(8*EPOCH))=AMP
IF(ID(9+(8*EPOCH)).LE.(LOW(EPOCH)*1O-100).OR.ID(9+(8*EPOCH)) .GE.

+(HIGH(IEPOCH)*1O-100)) ID(9+(8*EPOCH))=O.O
C

END FOR
C
C WRITE OUT ID FILE WITH PEAK ESTIMATES
C

WRITE(40,102) ID
C
C NOW LATENCY ADJUST EACH TRIAL
C

FOR EST=1,5
C
C CONVERT P3 LATENCY TO NUMBER OF DATA POINTS
C

IF(EST.NE.5) THEN
IF(ID((EST*2)+17).EQ.O) GO TO 40
NPOINT=(ID((EST*2)+17)+100)/1o
ELSE
NPOINT=120 !EST 5 IS THE UNADJUSTED AVERAGE
END IF

C
C WHICH WAY SHOULD WE SHIFT THE WAVEFORM?
C

IF(NPOINT.LT. 120) ISHIFT--1
IF(NPOINT.EQ.120) ISHIFT-O
IF(NPOINT.GT. 120) ISHIFT=I

C
C NOW SHIFT THE WAVEFORM

158

C
IF(ISHIFT.EQ.0) THEN
FOR K-2,4
FOR J=1,210
YDATA(J,K)=DATA(J,K)
END FOR
END FOR
GO TO 150

C
ELSE IF(ISHIFT.EQ.-I) THEN

C
C SHIFT THIS WAVEFORM TO THE RIGHT ------- >
C

NDIFF=120-NPOINT

JMOVE=210-NDIFF
FOR K=2,4

XBASE=DATA(1,K)
FOR J=I,JMOVE
YDATA(J+NDIFF,K)=DATA(J,K)
END FOR

C
C NOW SET THE TRUNCATED REGION TO THE FIRST DATA POINT
C

FOR J=1,NDIFF
YDATA(J,K)fXBASE
END FOR
END FOR
GO TO 150

C
ELSE IF(ISHIFT.EQ.1) THEN

C
C SHIFT THIS WAVEFORM TO THE LEFT < ----------
C

NDIFF=NPOINT-120
JMOVE=210-NDIFF
FOR K=2,4
XBASE-DATA(210,K)
FOR Ji1,JMOVE
YDATA(J,K)-DATA(J+NDIFF,K)
END FOR

C
C NOW SET THE TRUNCATED REGION TO THE LAST DATA POINT
C

ITEMP=210-NDIFF+1

FOR J-ITEMP,210
YDATA(J,K)=XBASE
END FOR
END FOR
GO TO 150
END IF

C

159

150 CONTINUE
C
C IDENTIFY WHICH BIN TRIAL SHOULD BE ASSIGNED TO
C

BIN=O
C

IF(ID(IO).EQ.1) THEN !TARGETS
C

IF(ID(8).EQ.1) THEN !CM CONDITIONS
C

IF(ID(5).EQ.O.AND.ID(7).EQ.2) BIN=1
IF(ID(5).EQ.4.AND.ID(7).EQ.2) BIN=2
IF(lD(5).EQ.15.AND.ID(7).EQ.2) BIN=3
IF(ID(5).EQ.O.AND.ID(7).EQ.4) BIN=4
IF(ID(5).EQ.4.AND.ID(7).EQ.4) BIN=5
IF(ID(5).EQ.15.AND.ID(7).EQ.4) BTN=6

C
ELSE IF(ID(8).EQ.2) THEN !VM CONDITIONS

C
IF(ID(5).EQ.O.AND.ID(7).EQ.2) BIN=7
IF(ID(5).EQ.4.AND.ID(7).EQ.2) BIN=8
IF(ID(5).EQ.15.AND.ID(7).EQ.2) BIN=9
IF(ID(5).EQ.O.AND.ID(7).EQ.4) BIN=1O
IF(ID(5).EQ.4.AND.ID(7).EQ.4) BIN=11
IF(ID(5).EQ.15.AND.ID(7).EQ.4) BIN=12
END IF

C
ELSE IF(ID(1O).EQ.2) THEN ! DISTRACTORS

C
IF(ID(8).EQ.1) THEN ! CM CONDITIONS

C
IF(ID(5).EQ.O.AND.ID(7).EQ.2) BIN=13
IF(ID(5).EQ.4.AND.ID(7).EQ.2) BIN=14
IF(ID(5).EQ.15.AND.ID(7).EQ.2) BIN=15
IF(ID(5).EQ.O.AND.ID(7).EQ.4) BIN=16
IF(ID(5).EQ.4.AND.ID(7).EQ.4) BIN=17
IF(ID(5).EQ.15.AND.ID(7).EQ.4) BIN=18

C
ELSE IF(ID(8).EQ.2) THEN !VM CONDITIONS

C
IF(ID(5).EQ.O.AND.ID(7).EQ.2) BIN=19
IF(ID(5).EQ.4.AND.ID(7).EQ.2) BIN=20
IF(ID(5).EQ.15.AND.ID(7).EQ.2) BIN=21
IF(ID(5).EQ.O.AND.ID(7).EQ.4) BIN=22
IF(ID(5).EQ.4.AND.ID(7).EQ.4) BIN-23
IF(ID(5).EQ.15.AND.ID(7).EQ.4) BIN=24

C
END IF

C
END IF
IF(BIN.EQ.O) GO TO 40

160

C
C SUM THE POINTS

NTRIAL(BIN,EST)=NTRIAL(BIN ,EST)+1

FOR KID=1,26
AVEID(KID,BIN ,EST)=ID(KID)
END FOR
FOR LCHAN=2,4
FOR LPT=1.,210
AVE(LPT,LCHAN-1,BIN,EST)"

+AVE(LPT,LCHAN-i ,BIN,EST)+YDATA(LPT,LCHAN)

END FOR
END FOR

C
END FOR
END IF

40 END LOOP
50 CONTINUE
C

C CALCULATE AVERAGES FOR EACH CONDITION

C
FOR EST=1,5

DO 300 MBIN=1,24
IF(NTRIAL(MBIN,EST).EQ.O) GO TO 300

FOR MCHAN=1,3
FOR MPT=1.,210
AVE(MPT ,MCHAN ,MBIN ,EST)=AVE(MPT ,MCHAN ,MBIN ,EST) /NTRIAL(MBIN ,EST)

IF(MPT.LE.1O) BAVE(MCHAN,MBIN,EST)=BAVE(MCHAN,MBIN,EST)
*+(AVE(MPT ,MCHAN ,MBIN ,EST)/1O)

END FOR
END FOR

300 CONTINUE

C SUBTRACT BASELINE FROM AVERAGE AND OUTPUT AVERAGES

FOR JBIN=1,24
FOR JCHAN=1,3
FOR JPT=1,210

AVE(JPT,JCHAN,JBIN,EST)=AVE(JPT,JCHAN,JBIN ,EST)

*-BAVE(JCHAN ,JBIN ,EST)
END FOR

WRITE(41,100) EST,REAL(JBIN),REAL(JCHAN),REAL(NTRIAL(JBIN,EST)),

+(AVEID(K,JBINEST),K=1,26),(AVE(N,JCHAN,JBIN,EST),N=1,21O)
END FOR
END FOR
END FOR
STOP

100 FORMAT(22F6.O)
101 FORMAT(1615)

102 FORMAT(11F6.O)
END

161

C
SUBROUTINE VECT(NPT,OR,POL,FZ,CZ,PZ,P3)

C
C THIS SUBROUTINE PERFORMS A VECTOR FILTER

C FOR ANY GIVEN POLARITY AND ORIENTATION.

C THE DATA MUST COME FROM THREE SCALP ELECTRODES.

C

C ARGUMENTS:

C NPT # OF POINTS (MAX=700)

C OR ORIENTATION ANGLE
C FOR P300 USE OR=300 OR 330

C POL POLARITY ANGLE

C FOR P300 USE POL=15 OR 30

C FZ (210) DATA ARRAYS. IT IMPLIES:

C Cz (210)
C PZ (210)
C ELI=FZ, EL2=CZ, EL3=PZ

C P3 (210) VECTOR FILTERED DATA
C

DIMENSION FZ(NPT),CZ(NPT),PZ(NPT),P3(NPT)

C

VLOAD=COS(POL*6.2829/360.)

XLOAD=COS(OR*6.2829/360.)*VLOAD

YLOAD=SIN(OR*6.2829/360.)*VLOAD

ZLOAD=SIN(POL*6 .2829/360.)
C

FOR K=I,NPT

C ROTATE AXES

Z=(FZ(K)+CZ(K)+PZ(K))*.57735
Y=(2.*CZ(K)-(FZ(K)+PZ(K)))*.40825
X-(PZ(K)-FZ(K))*.70711

C VECTOR FILTER

P3(K)=X*XLOAD+Y*YLOAD+Z*ZLOAD
END FOR
RETURN

END

162

C
C SUBROUTINE CROSS
C

SUBROUTINE CROSS(NPTS,ILOW,IHIGH,TEMP,DATA,CORMAX,LAT,BMAX)
DIMENSION DATA(NPTS) ,TEMP(50) ,WIND(50)
LBEG= ILOW
LEND=IHIGH
IF(LBEG.LT.25)LBEG=-25
IF(LEND.GT. (NPTS-25)) LEND=-NPTS-25
CORMAX=O.
FOR LAG=LBEG,LEND

IBEG=LAG-2 5
IEND=LAG+24
FOR I=IBEG,IEND

WIND(I-IBEG+1)=DATA(I)
END FOR
CALL CORR(WIND,TEMP,50,R,B)
IF(R.GE.CORMAX)THEN

CORMAX=R
BMAX=B
LAT=LAG* 10-100

END IF
END FOR
RETURN
END

163

C
C SUBROUTINE CORR
C

SUBROUTINE CORR(X,Y,INPTS,RB)
DIMENSION X(NPTS) ,Y(NPTS)
R=O.
IF(NPTS.LT.2)RETURN
XSUM=O.
YSUM=O.
X2 SUM=O.
Y2SU-M=O.
XYSUM=O.
FOR I-1,NPTS
XSUM=X(I)+XSUM
YSUM=Y(I)+YSUM
X2SUM=X(I)*X(I)+X2SUM
Y2SUM=Y(I)*Y(I)+Y2SUM
XYSUM=X(I)*Y(I)+XYSUM

END FOR
XMEAN=XSUM/NPTS
YMEAN-YSUM/NPTS
XVAR-X2 SUM! NPTS-XMEAN* XMEAN
YVAR-Y2 SUM/NPTS-YMEAN*YNEAN
COV=XYSUM/NPTS-XMEAN* YMEAN
IF(XVAR.LE.O. .OR.YVAR.LE.O.)RETURN
XSD=SQRT(XVAR)
YSD=SQRT(YVAR)
R=COV/(CXSD*YSD)
B= R*XSD/ YSD
RETURN
END

164

C
C SUBROUTINE PKPICK
C

SUBROUTINE PKPICK (VECTOR,NFTS,ILOW,IHIGH,LAT,AMP)
DIMENSION VECTOR(NPTS)
PEAK-VECTOR(ILOW)
LAT=ILOW
FOR J=ILOW,IHIGH
IF(VECTOR(J).LE.PEAK) GO TO 10
PEAK-VECTOR(J)
LAT= J

10 END FOR
LAT=LAT* 10-100
AMP= PEAK
RETURN
END

165

C FILTER SUBROUTINES TAKEN FROM CPL LIBRARY LIB*F.TSLIB
C

SUBROUTINE FILTR(WAVI ,WAV2) ,FILTN(NEW,LTIME,NSTRT,
1NSTOP,NTYPE ILGL,NUMLLGH,NUMH)

C LOW PASS AND HIGH PASS FILTER IN CASCADE
C WAV1=INPUT; WAV2=OUTPUT
C PROGRAMMER - D.S.RUCHKIN
C VERSION - 5/25/75

DIMENSION WAV1(LTIME),WAV2(LTIME) ,TWAV(2001)
INTEGER HSTRT ,HSTT ,HSTOP ,HSTP ,HRAN

C
IF(NTYPE.EQ.O) RETURN
IF(LGH.EQ.O.AND.LGL.EQ.O) RETURN
IF(LGH.NE.O) GO TO 20

C
C ONLY LOW PASS
C

CALL BOX(LSTRT,LSTOP,LGL,NUML,DIVL,WAVL ,WAV2 ,LTIME)
CALL EDGE(NSTTI ,NSTP1 ,LTIME,WAV1 ,WAV2)
RETURN

C
C HIGH OR BAND PASS
C
20 CALL BOX(HSTRT,HSTOP,LGH,NUMH,DIVHWAV1.,TWAV ,LTIME)

DO 25 K=HSTRT,HSTOP
25 WAV2(K)-WAV1(K)-TWAV(K)

IF(LGL.NE.O) GO TO 50
C
C ONLY HIGH PASS
C
40 CALL EDGE(NST1 ,NSTPI ,LTIME,WAV1 ,WAV2)

RETURN
C
C BAND PASS
C
50 CALL BOX(LSTRT,LSTOP,LGL,NUML,DIVL,WAV2 ,WAV2 ,LTIME)

CALL EDGE(NSTTL ,NSTP1 ,LTIME,WAVI ,WAV2)
RETURN

C
C INITIALIZATION ENTRY
C

ENTRY FILTN
C IF NEW-O; RETAIN OLD PARAMETERS
C IF NEW-I; READ NEW PARAMETERS

IF(NEW.EQ.O) GO TO 280
NSTT1-NSTRT-I
NSTP 1-NSTOP+ 1
IF(LGL.EQ.O) GO TO 120

C
C LOW PASS PARAMETERS
C

166

DIVL=2*LGL+1
DIVL=1 .O/DIVL
LRAN-(NUML-1)*LGL
LSTRT-NSTRT-LRAN
LSTT=LSTRT-LGL
LSTOP=NSTOP+LRAN
LSTP-LSTOP+LGL
IF(LSTT.LT.1.OR.LSTP.GT.LTIME) GO TO 250

c
C HIGH PASS PARAMETERS
C
120 IF(LGH.EQ.O) GO TO 200

DIVH=2*LGH+l
DIVH=1 .0/DIVH
IF(LGL.EQ.0) GO TO 140

C
C BAND PASS-HIGH PARAMETERS
C

HRAN=(NUMH-1)*LGH
HSTRT=LSTT-HRAN
HSTOP=LSTP+HRAN
GO TO 145

C
C ONLY HIGH PASS
C
140 HRAN=(NUMH-1)*LGH

HSTRT=NSTRT-HRAN
HSTOP=NSTOP+HRAN

145 HSTT=HSTRT-LGH
HST P=HSTOP+LGH
IF(HSTT.LT.L.OR.HSTP.GT.LTIME) GO TO 250

C
C OUTPUT AND RETURN
C
200 WRITE(6,501) NTYPE,NSTRT,NSTOP,LGL,NUML,LGH,NUMIH

IF(LGL.NE.O) WRITE(6,502) LSTRT,LSTOP,DIVL
IF(LGH.NE.0) WRITE(6,503) HSTRT,HSTOP,DIVH
RETURN

C
C ERROR
C
250 NTYPE-O

WRITE(6 ,504)
GO TO 200

C
C SAME PARAMETERS
C
280 IF(NTYPE.EQ.O) GO TO 200

WRITE(6 .505)
RETURN

C

167

C FORMATS
C
500 FORMAT(I2,6I4)
501 FORMAT(- FILTR,5/25/75,NTYPE=I2/,5X,-NSTRT--I4.

1I NSTOP~o,I4,o LGL~o,14,' NUML',14,o LGH-',14,
2 - NUMH~flo,14)

502 FORMAT(5X,-LSTRT=o,I4,o LSTOP=o,14,(DIVL-',FB.5)
503 FORMAT(5X'HSTRT=,I4, HSTOPo,I4,' DIVH=oF8.5)
504 FORMAT(' FILTER ERROR)
505 FORMAT(' NO FILTER"/)

END

168

C
C
C
C
C

SUBROUTINE BOX(NSTRT,NSTOP,LG,NUMH,DIV,WAVE1,TWAV1,NPOINT)

C
C ITERATIVE BOX-CAR FILTER

C WAVE1=INPUT; TWAVE=OUTPUT
C

DIMENSION WAVEI(NPOINT),TWAVI(NPOINT),WAVE3(2001),TWAVE(2001)

C
C TRANSMIT INPUT TO WORK AREA
C

NCL=NSTRT-LG

NCU=NSTOP+LG
DO 4 J=NCL,NCU

4 WAVE3(J)=WAVE1(J)
NUMIT=l

MSTRT=NSTRT

MSTOP=NSTOP
C
C BEGIN ITERATION LOOP

C
10 DO 50 J=MSTRT,MSTOP

SUM=O.0

NCL=J-LG
NCU=J+LG
DO 40 K=NCLNCU

40 SUM=SUM+WAVE3(K)
50 TWAVE(J)=SUM*DIV

IF(NUMIT.GE.NUMH) GO TO 100
NUMIT=NUMIT+l

DO 5 J=MSTRT,MSTOP
5 WAVE3(J)=TWAVE(J)

MSTRT=MSTRT+LG
MSTOP=MSTOP-LG

GO TO 10

C
C MOVE OUTPUT AND RETURN

C

100 DO 110 K=NSTRT,NSTOP
110 TWAVL(K)=TWAVE(K)

C MODIFICATION BY E. HEFFLEY 9/13/77

C MODIFIED MOVING AVERAGE DONE AT BEGINNING
C AND END OF EPOCH. THIS IS FOR CASES WHEN ITERATIONSl.

C IT AVERAGES ACROSS LESS THAN 2*LG+I POINTS BY REDISTRIBUTING
C WEIGHTS ACROSS POINTS AT BEGINNING (OR END) OF EPOCH

C SUCH THAT POINTS CLOSER TO THE BEGINNING ARE GIVEN HIGHER
C WEIGHTS BECAUSE PRESUMABLY THEY ARE BETTER PREDICTORS OF
C THE PRECEDING POINTS (WHICH WERE NOT RECORDED BUT SHOULD HAVE

169

C BEEN TO ALLOW FILTERING OF FIRST LG POINTS IN THE EPOCH).

BASE-DIV
ISTART=NSTOP+l
Do 200 IPT=ISTART,NPOINT
NLEFT=(LG+1)+(NPOINT-IPT)
NREMN=(2*LG+1)-NLEFT
AREA=NREMN* BASE

DX=NLE FT
DY=(2 .*AREA) /DX
SLOPE=DY/(DX-1 .0)
IFIRST=IPT-LG
5131=0.0
WTOT=O.O
DO 160 IPTR=IFIRST,NPOINT
WEIGHT=(IPTR-IFIRST)* SLOPE
WTOT=WTOT+WE IGHT
SU1=SUM+WAVEI(CIPTR)*(WEIGHT+BASE)

160 CONTINUE
TWAVI (IPT)=SUM

C WRITE(6,1200) ISTART,NLEFT,NREI4N,AREA,DX,DY,SLOPE,WTOT
1200 FORMAT(' START',14,' LEFT=,14,(NREMN=',14,/,

I ' AREA=',F8.4,' DX=',F8.4,' DY=',F8.4,' SLOPE= , F8 .4,
2 /, - WTOT=-,F8.4)

200 CONTINUE
1END,=NSTRT- I
DO 300 IPT=IEND,1,-l
NLEFT=(LG+1)+(IPT-1)
NREMN=(2*LG+1)-NLEFT
AREA=NREMN* BASE
DX=NLE FT
Dl=(2 .*AREA) /DX
SLOPE=DY/(DX-1 .0)
ILAST= IPT+LG
SUM=O.O
WTOT=O.O
DO 260 IPTR-ILAST,1,-l
WEIGHT-C ILAST-IPTR)* SLOPE
WTOT=WTOT+WE IGHT
SUM=SUM+WAVEI CIPTR)*(WEIGHT+BASE)

260 CONTINUE
TWAVI(CIPT)='SUM

C WRITE(6,1220) IEND,NLEFT,NREMN,AREA,DX,DY,SLOPE,WTOT
1220 FORMAT(' END=',14,' LEFT-',14,' NREMN=,14,/,

I ' AREA-',F8.4,' DX=',F8.4,(DY=',F8.4,(SLOPE=',F8.4,
2 /,- WTOT--,F8.4)

300 CONTINUE
RETURN
END

170

C
C
C
C

SUBROUTINE EDGE(NSTT,NSTP,LTIME,WAV1 ,WAV2)
C EDGE FIXING ROUTINE CALLED BY FILTR

DIMENSION WAVI(LTIME) ,WAV2(LTIME)
C

DO 10 K=1,NSTT
10 WAV2(K)=WAVI(K)

DO 20 K=NSTP,LTIME
20 WAV2(K)=WAVI(K)

RETURN
END

171

Appendix L

TSD.FOR A program to compute various signal detection parameters given Hit
and False Alarm Rates.

172

C
C F.TSD - A PROGRAM TO CALCULATE SEVERAL MEASURES OF
C SENSITIVITY AND BIAS FROM SIGNAL DETECTION
C THLORY GIVEN THE FOLLOWING:
C
C PROGRAMMER: DAVID STRAYER
C UNIVERSITY OF ILLINOIS
C
C
C NUMBER OF HITS
C NUMB-R OF FALSE ALARMS
C
C THE INPUT CAN BE RAW SCORES, OR PROPORTIONS RELATIVE TO
C CATEGORY (E.G., p(HIT)+p(MISS)=I.O AND p(FA)+p(CR)=I.O)
C

INTEGER*1 IANS
REAL HIT, FA, CR, MISS, APRIME, BPMPM, AG, E, PS, BETA,LNBETA,

+DPRIME, Z1, Z2, TEST1, TEST2, CO, C1, C2, Dl, D2, D3, K,
+T1, T2, T3, T4, BI, BPRIME

C
I WRITE(3,*) 'Enter HIT rate'

READ(O,*) HIT
IF(HIT.GT.1.O) THEN
WRITE(3,*) 'Enter MISS Rate'
READ(O,*) MISS
HIT=HIT/(HIT+MISS)
END IF
MISS-1.0-HIT

C
WRITE(3,*) 'Enter False Alarm (FA) rate'
READ(O,*) FA
IF(FA.GT.I.0) THEN
WRITE(3,*) 'Enter Correct Rejection (CR) rate-
READ(O,*) CR
FA=FA/(CR+FA)
END IF
CR=l.0-FA
WRITE(3,*) - Response

WRITE(3,*) ' Yes No
WRITE(3,*) - "
WRITE(3,98)HIT, MISS

98 FORMAT(' Target presented : ,F3.2," ' ",F3.2, ')
WRITE(3,*) " : HIT MISS

WRITE(3,*) " : ..
WRITE(3,99) FA, CR

99 FORMAT(' Distractor presented : ,F3.2, : ,F3.2, :')
WRITE(3,*) ' : FA CR

WRITE(3,*) ' . .:....... 0
WRITE(3,*) - "
WRITE(3,*) ' Are ALL parameters correct? (Y/N)"
READ(0,2) IANS

173

2 FORMAT(AI)
IF(IANS.NE.-Y-.AND.IANS.NE.'y') GOTO 1

C

C FUDGE FACTORS TO PREVENT DIVISION BY ZERO

C
IF(HIT.EQ.1.O) THEN

HIT=.9999

MISS=1-HIT
END IF

C
IF(HIT.EQ.0.O) THEN

HIT=.O001
MISS=1-HIT

END IF

C
IF(FA.EQ.1.O) THEN
FA=.9999

CR=1-FA

END IF

C

IF(FA.EQ.O.O) THEN
FA=.O001

CR=I-FA

END IF
C

C

C FORMULA FOR CALCULATING A- (A NONPARAMETRIC MEASURE OF EFFICIENCY)
C

C FROM WICKENS(1984), (P. 502) SEE ALSO POLLACK AND NORMAN (1964)

C RECOMMENDED BY PARASURAMAN AND DAVIES AS THE BEST MEASURE OF
c SENSITIVITY

C

C A-=I-.25*((FA/HIT)+(I-HIT)/(I-FA))

C
APRIME=I-.25*((FA/HIT)+(I-HIT)/(I-FA))

C

C FORMULA FOR CALCULATING A- (ANOTHER NONPARAMETRIC AREA MEA-jRE)
C

C FROM CRAIG, 1979 SEE ALSO GREEN AND SEWTS (1966)
C Ag= (HIT+(I-FA))/2

C

AG=(HIT+(I-FA))/2.0
C
C FORMULA FOR CALCULATING E (YET ANOTHER NONPARAMETRIC AREA MEASURE)

C
C FROM CRAIG (1979) SEE ALSO MCCORNACK (1961)

C

C E=1-((1-HIT) / ((1-HIT) * PS + (FA * PS) - FA))

C WHERE PS IS SIGNAL PROBABILITY (BATCH QUALITY)

C (THIS PROGRAM ASSUMES PS=.5)

C

174

PS=. 5
E= 1 -((1-HIT) /((1-HIT*PS) +(FA*PS-FA))

C
C FORMULA FOR CALCULATING d', B AND in B
C
C FROM GARDNER AND BOICE (1986) ...
C
C

CO=2 .5 155 17
CI=O.802853
C2=0.010328
DI=1 .432788
D2=0. 189269
D3=0.00 1308
K=SQRT(1/(2*3.141592654))
T1=SQRT(LOG(1/(MISS*MISS)))
T2=SQRT(LOG(1/(HIT*HIT)))
T3=SQRT(LOG(1/(CR*CR)))
T4=SQRT(LOG(1/(FA*FA)))

C
TESTi =0
IF(HIT.GT..50) TEST1=1
Z1=(T1-(CO+C1*T1+C2*T1*T1)I(+D1*T1+D2*T1*T1+D3*T1*TI*T))*TEST1-

&(T2-(CO+C1*T2+C2*T2*T2)I(+D1*T2+D2*T2*T2+D3*T2*T2*T2))*(1-TESTi)
C

TEST2=O
IF (FA.GT..50) TEST2=1
Z2=(T3-(CO+C1*T3+C2*T3*T3)/(1+D1*T3+D2*T3*T3+D3*T3*T3*T3))*TEST2-

&(T4-(CO+C1*T4+C2*T4*T4)/(1+D1*T4+D2*T4*T4+D3*T4*T4*T4))*(1-TEST2)
C

DPRIME=Z1-Z2
C

BETA=(K*EXP(-(Z1*Z1)/2))/(K*EXP(-(Z2*Z2)/2))
C

LNBETA=LOG(BETA)
C
C YET ANOTHER MEASURE OF RESPONSE BIAS B' FROM McNICHOL (1972)
c SEE PARASURAMAN AND DAVIES CHAPTER 3, P46
C
C B'-BETA/SD(s)
C SD(s) IS TAKEN AS THE INVERSE OF THE ROC SLOPE. THE SLOPE OF THE
C ROC IS EQUAL TO THE LIKELIHOOD RATIO AT CRITERION (BETA)
C (THIS SEEMS TO BE AN UNSTABLE ESTIMATE)
C

BPRIME-BETA/(1/BETA)
C
C
C CALCULATE BETA"-
C
C USING THE FOLLOWING FORMULA FROM JOHN POLICH
C NOTE: B- GETS WEIRD IF P(HIT) OR P(FA) =1.0

175

C
IF)

C B-=(HIT(ILHIT)FA(1FA))/(HIT(1-HT)+FA(IF)

c BPMPM(HIT*(l1.HIT)FA*(l1.FA))/(HIT*(1.HIT)+FA*(l1.-FA))

WRITE(3,*) ' Sensitivity measures: -

+'Dprime Aprime Ag E

WRITE(3,100) DPRI!{E,APRIME,AG,E
WRITE(3,*) ' -

WRITE(3,*) ' Response Bias Measures: ,

+-Beta LnBeta Bprime BPMPM

WRITE(3,100) BETA, LNBETA, BPRIME, BPMPM

WRITE(3,*) -

STOP

100 FORMAT(25X,4(FIO.6,
4X))

END

176

Appendix M

Written instructions given to the subject at the onset of the experiment,

which describe the experimental procedure.

177

The experiment which you are about to participate in has been designed to
study aspects of the way we use memory. It is extremely important that you
follow the instructions that you are about to read very closely. Even if
it seems that you could perform the task better by adopting a strategy
different from the one you will be instructed to use, please do only as you
are instructed. Please read the instructions carefully, and if you have any
questions, please ask them before beginning the experiment.

During the experiment you will work at an IBM PC. Stimuli will be displayed
on the computer's screen, and you will make "yes" and "no" responses by
pressing keys designated by the experimenter. There will be many trials,
each of which will proceed as follows:

1) You will see on the screen two or four words. They will remain on the
screen for three seconds. While the words are on the screen, commit
them to memory by repeating them over and over to yourself.

2) The words will disappear. When they do, a series of numbers may appear
on the screen. (On some trials this part will not happen, and we will
skip to step 3.) Watch the first two numbers carefully, but do nothing.
When the third number appears, compare it to the first number you saw.
If it is the same, respond "yes"; if it is not the same as the first
number press the "no" key. When the fourth number appears, compare it
to the second number, responding "yes" or "no" as you did for the third
number. Continue comparing every number that appears on the screen to
the number two before it. I.E.: The fifth number will be compared to the
third number, the sixth number will be compared to the fourth number,
etc.. Respond "yes" or "no" as quickly and accurately as you can. This
part of the experiment is difficult. Do not be discouraged if it takes
you a little while to get good at it. Do not think about the words you
saw at the start of the trial while you are doing this task.

3) An asterisk will appear on the screen. This signals you that it is time
to remember the words that you saw at the start of the trial.

4) A word will appear on the screen. Respond by pressing the "yes" key if
if is one of the words you saw at the start of the trial. Respond "no"
if it is not. Respond as quickly as you can while maintaining accuracy.
If you do not know if the word was presented at the beginning of this
trial, think for a little while, and then guess if you still cannot
remember. Try to always make a response.

5) There will be a short pause, and then a new trial will begin.

Things happen quickly in this experiment so please be alert. There will be
a break midway through each session. The experimenter will have to use
your computer to arrange things for the second half. This is your
opportunity to rest. Begin again when you feel you are ready.

Before you leave, make sure that you and the experimenter agree upon when
your next session is scheduled to take place.

178

Thank you for your participation!

179

Appendix N

Single subject scalp distribution ERPs collected using program PMSM.FLX.
The solid line represents the Fz electrode, dash Cz, and dotted Pz. Ten

single subject plots are included. Note that subjects 8 and 9 were rejected

due to high error rates. Subject 9 also has a large amount of alpha
activity. The baseline subtracted from each waveform is from -100 msec
pre-Si to Si. The number of trials included in each average is displayed in

the upper left-hand portion of each plot. A description of the ERPS is
included in the results section of the report.

180

MEM 4 DE 0 TAR MEM 2 DE 4 NTR[R MEN 4 OFE 15 NTR

1 922 9

MEM 2 0DE 15 T FiR MEM 2 ODE 0 NTRR MEM 4 ODE 4 NTR

1711

AI I

"o~

90 1910

M1EM 4 OF 0 TfRh MEM 2 DF 4 NTAR MEM 4 OF 15 N~TAR

I/ v

MEM 2 OF 15 TfR MEM 2 OF 15 TRB MEM 4 OF 4 NTRB

. IV

V,.

.MEM 4 OE 0 TAR MEM 2 OE 4 NTRR MEM 4 DE 15 NTR

23 Is

MEM 2 OF 15 TAIR MEM 2 DE 0 NTAR MFM 4 OF 4 NTR

123185

MEM 2 DE 4 TAR. MEM 4 OF 15 TAIR M EM .4 OE-O NTR

124, 1122

30 --- ME 2 E0TI E E4 TR EM2D 5NR
1 23) s'9 1\

\V -

A,,

10 Il 900 1~O 0NJ

MEM 4 OF 05 TR MEM 2 OF 4 NTF-R MEM 4 OF 4~ NiOR
12

ME 2 F4TARIM4-E15FR MM. FCNn

MEM 2 OF 15 TRR MEM 2 E 4F 0NAR MEM 4 OF 4 NTHP.

1 23 160 12

I ~ A

M7

240 96 190

w tei-.4

..

MEM 4 OF 0 TAR M.--M .2 DE 4 NTPP MEM 4 OE 15 NTAR

Z 'I

MEM 2 OF 15 TAR MEM 2 DE 0 NTAR MEM 4 OF 15 NTAR

~~7'A

Do j\ I
- 0 61

A6 C

MEM 4 OF J TPR YEM 2 OF 4 N TAR MF.M 4 OF 15 NTF-R

AN A

.A

MEM 2 OF 15 TAR MEM 2 OF 1D TAR MEM 4 OF 4 NMR

MEM 2 OF 4 J'AR MEM 4 OF 45 TRR MEN 2 DF I N Ti P

II

I (A

M:LM 4 OFE 0 VARR MEM 2 E 4 NTAR M1.1 4 Fh N! 5 Nl P,
1 22 12

(vj\

I f

MEM 2 OF 14 TAP, MEM 2 0 N5TAP, MEM .4 DE 4 NTAR

25 124

MEM 2 OF 4 T A R MEM 4 F 154 T AB MEM .4 OF 05 NTAR

27 126

-i ~ ~ b',W 3 10

*1~m 7

..

IIEM 4 ODE ID VRH MEM 2 IDE 4 NTPPI MLM 4 OFE 15 NTFIR
j14

18 14

30 M1EM 2 IDE 15 TARI MEM .4 OE 4 NTAR MEM 4 DE 45 NTAR

I Io

__ 1: e d

MEM 4 IDE 0 TR MM 2 IDE 4 NTAR MEM 4 IDE 15 NTRf3

21 251

MEM -2 IDE 14 -TRH MEM 24 -OE 15 NTR. MEM .4 0D 4 NUR,

121 14 25 3

IF:

IVA. A

loo. go !90

MEM 4 OF 0 TARf MEM 2 OF 4 NTAR MEM 4 OF 15 NTPR

28125

MEM 2 DF 15 TAR M M 2 DFE 0 NTRP MEM 4 OF 4 NTAR

1 424 25

MEM 2 OF 4 TRR MEM .4 OF 15 TAR MEM .4 OF 3 NTnn

-300

MEM 2 OF 0 TARP MFM 4 OF *4 TrIIR MFM 2 OF 15 NTAR
-30 30 12- [20

*U.S Gov~m 4 1.tn ffm M 460 71

